Your browser doesn't support javascript.
loading
An Ultrastable and High-Performance Flexible Fiber-Shaped Ni-Zn Battery based on a Ni-NiO Heterostructured Nanosheet Cathode.
Zeng, Yinxiang; Meng, Yue; Lai, Zhengzhe; Zhang, Xiyue; Yu, Minghao; Fang, Pingping; Wu, Mingmei; Tong, Yexiang; Lu, Xihong.
Afiliação
  • Zeng Y; MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
  • Meng Y; MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
  • Lai Z; MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
  • Zhang X; MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
  • Yu M; MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
  • Fang P; MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
  • Wu M; MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
  • Tong Y; MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
  • Lu X; MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
Adv Mater ; 29(44)2017 Nov.
Article em En | MEDLINE | ID: mdl-28991385
ABSTRACT
Currently, the main bottleneck for the widespread application of Ni-Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni-based cathode and dendrite formation of the Zn anode during the charging-discharging processes. Herein, a highly rechargeable, flexible, fiber-shaped Ni-Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni-NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni-NiO heterojunction nanosheet cathode, the as-fabricated fiber-shaped Ni-NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni-NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g-1 ) electrolytes. Moreover, a peak energy density of 6.6 µWh cm-2 , together with a remarkable power density of 20.2 mW cm-2 , is achieved by the flexible quasi-solid-state fiber-shaped Ni-NiO//Zn battery, outperforming most reported fiber-shaped energy-storage devices. Such a novel concept of a fiber-shaped Ni-Zn battery with impressive stability will greatly enrich the flexible energy-storage technologies for future portable/wearable electronic applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article