Your browser doesn't support javascript.
loading
Zwitterionic and Charged Lipids Form Remarkably Different Structures on Nanoscale Oil Droplets in Aqueous Solution.
Chen, Yixing; Okur, Halil I; Lütgebaucks, Cornelis; Roke, Sylvie.
Afiliação
  • Chen Y; Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland.
  • Okur HI; Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland.
  • Lütgebaucks C; Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland.
  • Roke S; Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland.
Langmuir ; 34(3): 1042-1050, 2018 01 23.
Article em En | MEDLINE | ID: mdl-29019694
The molecular structure of zwitterionic and charged monolayers on small oil droplets in aqueous solutions is determined using a combined second harmonic and sum frequency study. From the interfacial vibrational signature of the acyl chains and phosphate headgroups as well as the response of the hydrating water, we find that zwitterionic and charged lipids with identical acyl chains form remarkably different monolayers. Zwitterionic phospholipids form a closely packed monolayer with highly ordered acyl tails. In contrast, the charged phospholipids form a monolayer with a low number density and disordered acyl tails. The charged headgroups are oriented perpendicular to the monolayer rather than parallel, as is the case for zwitterionic lipids. These significant differences between the two types of phospholipids indicate important roles of phospholipid headgroups in the determination of properties of cellular membranes and lipid droplets. The observed behavior of charged phospholipids is different from expectations based on studies performed on extended planar interfaces, at which condensed monolayers are readily formed. The difference can be explained by nanoscale related changes in charge condensation behavior that has its origin in a different balance of interfacial intermolecular interactions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article