Your browser doesn't support javascript.
loading
The deubiquitinating enzyme USP5 promotes pancreatic cancer via modulating cell cycle regulators.
Kaistha, Brajesh P; Krattenmacher, Anja; Fredebohm, Johannes; Schmidt, Harald; Behrens, Diana; Widder, Miriam; Hackert, Thilo; Strobel, Oliver; Hoheisel, Jörg D; Gress, Thomas M; Buchholz, Malte.
Afiliação
  • Kaistha BP; Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, Marburg, Germany.
  • Krattenmacher A; Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, Marburg, Germany.
  • Fredebohm J; Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Schmidt H; Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, Marburg, Germany.
  • Behrens D; Experimantal Pharmacology and Oncology (EPO Berlin-Buch), Berlin, Germany.
  • Widder M; Institute for Bioprocessing and Analytical Measurement Techniques (IBA-Heiligenstadt), Heilbad Heiligenstadt, Germany.
  • Hackert T; Department of Surgery, University Clinic Heidelberg, Heidelberg, Germany.
  • Strobel O; Department of Surgery, University Clinic Heidelberg, Heidelberg, Germany.
  • Hoheisel JD; Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Gress TM; Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, Marburg, Germany.
  • Buchholz M; Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, Marburg, Germany.
Oncotarget ; 8(39): 66215-66225, 2017 Sep 12.
Article em En | MEDLINE | ID: mdl-29029505
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumors. With an overall five-year survival rate remaining below 6%, there is an explicit need to search for new molecular targets for therapeutic interventions. We undertook a barcode labelled short-hairpin (shRNA) library screen in pancreatic cancer cells in order to identify novel genes promoting cancer survival and progression. Among the candidate genes identified in this screen was the deubiquitinase USP5, which subsequent gene expression analyses demonstrated to be significantly upregulated in primary human pancreatic cancer tissues. Using different knockdown approaches, we show that expression of USP5 is essential for the proliferation and survival of pancreatic cancer cells, tested under different 2D and 3D cell culture conditions as well as in in vivo experiments. These growth inhibition effects upon knockdown of USP5 are mediated primarily by the attenuation of G1/S phase transition in the cells, which is accompanied by accumulation of DNA damage, upregulation of p27, and increased apoptosis rates. Since USP5 is overexpressed in cancer tissues, it can thus potentially serve as a new target for therapeutic interventions, especially given the fact that deubiquitinases are currently emerging as new class of attractive drug targets in cancer.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article