Your browser doesn't support javascript.
loading
Selective oxidation of benzyl alcohols to benzoic acid catalyzed by eco-friendly cobalt thioporphyrazine catalyst supported on silica-coated magnetic nanospheres.
Li, Huan; Cao, Lan; Yang, Changjun; Zhang, Zhehui; Zhang, Bingguang; Deng, Kejian.
Afiliação
  • Li H; Key Laboratory of Catalysis and Material Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University For Nationalities, Wuhan 430074, China.
  • Cao L; Key Laboratory of Catalysis and Material Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University For Nationalities, Wuhan 430074, China.
  • Yang C; Key Laboratory of Catalysis and Material Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University For Nationalities, Wuhan 430074, China. Electronic address: yangchangjun@mail.scuec.edu.cn.
  • Zhang Z; Key Laboratory of Catalysis and Material Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University For Nationalities, Wuhan 430074, China.
  • Zhang B; Key Laboratory of Catalysis and Material Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University For Nationalities, Wuhan 430074, China.
  • Deng K; Key Laboratory of Catalysis and Material Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University For Nationalities, Wuhan 430074, China. Electronic address: dengkj@scuec.edu.cn.
J Environ Sci (China) ; 60: 84-90, 2017 Oct.
Article em En | MEDLINE | ID: mdl-29031450
A novel magnetically recoverable thioporphyrazine catalyst (CoPz(S-Bu)8/SiO2@Fe3O4) was prepared by immobilization of the cobalt octkis(butylthio) porphyrazine complex (CoPz(S-Bu)8) on silica-coated magnetic nanospheres (SiO2@Fe3O4). The composite CoPz(S-Bu)8/SiO2@Fe3O4 appeared to be an active catalyst in the oxidation of benzyl alcohol in aqueous solution using hydrogen peroxide (H2O2) as oxidant under Xe-lamp irradiation, with 36.4% conversion of benzyl alcohol, about 99% selectivity for benzoic acid and turnover number (TON) of 61.7 at ambient temperature. The biomimetic catalyst CoPz(S-Bu)8 was supported on the magnetic carrier SiO2@Fe3O4 so as to suspend it in aqueous solution to react with substrates, utilizing its lipophilicity. Meanwhile the CoPz(S-Bu)8 can use its unique advantages to control the selectivity of photocatalytic oxidation without the substrate being subjected to deep oxidation. The influence of various reaction parameters on the conversion rate of benzyl alcohol and selectivity of benzoic acid was investigated in detail. Moreover, photocatalytic oxidation of substituted benzyl alcohols was obtained with high conversion and excellent selectivity, specifically conversion close to 70%, selectivity close to 100% and TON of 113.6 for para-position electron-donating groups. The selectivity and eco-friendliness of the biomimetic photocatalyst give it great potential for practical applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Álcoois Benzílicos / Ácido Benzoico / Nanosferas / Modelos Químicos Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Álcoois Benzílicos / Ácido Benzoico / Nanosferas / Modelos Químicos Idioma: En Ano de publicação: 2017 Tipo de documento: Article