Your browser doesn't support javascript.
loading
Transcriptomics and proteomics reveal genetic and biological basis of superior biomass crop Miscanthus.
Sheng, Jiajing; Zheng, Xingfei; Wang, Jia; Zeng, Xiaofei; Zhou, Fasong; Jin, Surong; Hu, Zhongli; Diao, Ying.
Afiliação
  • Sheng J; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei, 430072, P.R. China.
  • Zheng X; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei, 430072, P.R. China.
  • Wang J; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei, 430072, P.R. China.
  • Zeng X; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei, 430072, P.R. China.
  • Zhou F; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei, 430072, P.R. China.
  • Jin S; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, P.R. China.
  • Hu Z; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei, 430072, P.R. China. huzhongli@whu.edu.cn.
  • Diao Y; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, Hubei, 430072, P.R. China. ydiao@whu.edu.cn.
Sci Rep ; 7(1): 13777, 2017 10 23.
Article em En | MEDLINE | ID: mdl-29062090
Miscanthus is a rhizomatous C4 grass which is considered as potential high-yielding energy crop with the low-nutrient requirements, high water-use efficiency, and capability of C mitigation. To better understand the genetic basis, an integrative analysis of the transcriptome and proteome was performed to identify important genes and pathways involved in Miscanthus leaves. At the transcript level, 64,663 transcripts in M. lutarioriparius, 97,043 in M. sacchariflorus, 97,043 in M. sinensis, 67,323 in M. floridulus and 70,021 in M. × giganteus were detected by an RNA sequencing approach. At the protein level, 1964 peptide-represented proteins were identified and 1933 proteins differed by 1.5-fold or more in their relative abundance, as indicated by iTRAQ (isobaric tags for relative and absolute quantitation) analysis. Phylogenies were constructed from the nearly taxa of Miscanthus. A large number of genes closely related to biomass production were found. And SSR markers and their corresponding primers were derived from Miscanthus transcripts and 90% of them were successfully detected by PCR amplification among Miacanthus species. These similarities and variations on the transcriptional and proteomic level between Miscanthus species will serve as a resource for research in Miscanthus and other lignocellulose crops.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Regulação da Expressão Gênica de Plantas / Biomassa / Proteômica / Transcriptoma / Poaceae Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Regulação da Expressão Gênica de Plantas / Biomassa / Proteômica / Transcriptoma / Poaceae Idioma: En Ano de publicação: 2017 Tipo de documento: Article