Your browser doesn't support javascript.
loading
Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding.
Carter, Charles W; Wills, Peter R.
Afiliação
  • Carter CW; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
  • Wills PR; Department of Physics, University of Auckland, Auckland, New Zealand.
Mol Biol Evol ; 35(2): 269-286, 2018 02 01.
Article em En | MEDLINE | ID: mdl-29077934
Genetic coding is generally thought to have required ribozymes whose functions were taken over by polypeptide aminoacyl-tRNA synthetases (aaRS). Two discoveries about aaRS and their interactions with tRNA substrates now furnish a unifying rationale for the opposite conclusion: that the key processes of the Central Dogma of molecular biology emerged simultaneously and naturally from simple origins in a peptide•RNA partnership, eliminating the epistemological utility of a prior RNA world. First, the two aaRS classes likely arose from opposite strands of the same ancestral gene, implying a simple genetic alphabet. The resulting inversion symmetries in aaRS structural biology would have stabilized the initial and subsequent differentiation of coding specificities, rapidly promoting diversity in the proteome. Second, amino acid physical chemistry maps onto tRNA identity elements, establishing reflexive, nanoenvironmental sensing in protein aaRS. Bootstrapping of increasingly detailed coding is thus intrinsic to polypeptide aaRS, but impossible in an RNA world. These notions underline the following concepts that contradict gradual replacement of ribozymal aaRS by polypeptide aaRS: 1) aaRS enzymes must be interdependent; 2) reflexivity intrinsic to polypeptide aaRS production dynamics promotes bootstrapping; 3) takeover of RNA-catalyzed aminoacylation by enzymes will necessarily degrade specificity; and 4) the Central Dogma's emergence is most probable when replication and translation error rates remain comparable. These characteristics are necessary and sufficient for the essentially de novo emergence of a coupled gene-replicase-translatase system of genetic coding that would have continuously preserved the functional meaning of genetically encoded protein genes whose phylogenetic relationships match those observed today.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Evolução Biológica / Origem da Vida / Código Genético / Aminoacil-tRNA Sintetases Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Evolução Biológica / Origem da Vida / Código Genético / Aminoacil-tRNA Sintetases Idioma: En Ano de publicação: 2018 Tipo de documento: Article