Your browser doesn't support javascript.
loading
Real-time and non-invasive measurements of cell mechanical behaviour with optical coherence phase microscopy.
Gillies, D; Gamal, W; Downes, A; Reinwald, Y; Yang, Y; El Haj, A J; Bagnaninchi, P O.
Afiliação
  • Gillies D; MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, EH16 4UU, UK; Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK.
  • Gamal W; MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, EH16 4UU, UK.
  • Downes A; Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK.
  • Reinwald Y; Institute for Science and Technology in Medicine, Keele University, Keele, ST4 7QB, UK.
  • Yang Y; Institute for Science and Technology in Medicine, Keele University, Keele, ST4 7QB, UK.
  • El Haj AJ; Institute for Science and Technology in Medicine, Keele University, Keele, ST4 7QB, UK.
  • Bagnaninchi PO; MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, EH16 4UU, UK. Electronic address: Pierre.Bagnaninchi@ed.ac.uk.
Methods ; 136: 126-133, 2018 03 01.
Article em En | MEDLINE | ID: mdl-29080739
ABSTRACT
Cell mechanical behaviour is increasingly recognised as a central biophysical parameter in cancer and stem cell research, and methods of investigating their mechanical behaviour are therefore needed. We have developed a novel qualitative method based on quantitative phase imaging which is capable of investigating cell mechanical behaviour in real-time at cellular resolution using optical coherence phase microscopy (OCPM), and stimulating the cells non-invasively using hydrostatic pressure. The method was exemplified to distinguish between cells with distinct mechanical properties, and transient change induced by Cytochalasin D. We showed the potential of quantitative phase imaging to detect nanoscale intracellular displacement induced by varying hydrostatic pressure in microfluidic channels, reflecting cell mechanical behaviour. Further physical modelling is required to yield quantitative mechanical properties.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomografia de Coerência Óptica / Microfluídica / Pressão Hidrostática / Microscopia Tipo de estudo: Qualitative_research Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomografia de Coerência Óptica / Microfluídica / Pressão Hidrostática / Microscopia Tipo de estudo: Qualitative_research Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article