Your browser doesn't support javascript.
loading
Genotoxicity of carbon tetrachloride and the protective role of essential oil of Salvia officinalis L. in mice using chromosomal aberration, micronuclei formation, and comet assay.
Diab, Kawthar Ae; Fahmy, Maha A; Hassan, Zeinab M; Hassan, Emad M; Salama, Adel B; Omara, Enayat A.
Afiliação
  • Diab KA; Genetics and Cytology Department, National Research Centre (NRC), 33 El-Bohouth st, Dokki, Cairo, Egypt. kawthar_diab@yahoo.com.
  • Fahmy MA; Genetics and Cytology Department, National Research Centre (NRC), 33 El-Bohouth st, Dokki, Cairo, Egypt.
  • Hassan ZM; Natural Compounds Department, National Research Centre (NRC), 33 El-Bohouth st, Dokki, Cairo, Egypt.
  • Hassan EM; Medicinal and Aromatic Plants Research Department, National Research Centre (NRC), 33 El-Bohouth st, Dokki, Cairo, Egypt.
  • Salama AB; Medicinal and Aromatic Plants Research Department, National Research Centre (NRC), 33 El-Bohouth st, Dokki, Cairo, Egypt.
  • Omara EA; Pathology Department, National Research Centre (NRC), 33 El-Bohouth st, Dokki, Cairo, Egypt.
Environ Sci Pollut Res Int ; 25(2): 1621-1636, 2018 Jan.
Article em En | MEDLINE | ID: mdl-29098592
The present work was conducted to evaluate the genotoxic effect of carbon tetrachloride (CCl4) in mouse bone marrow and male germ cells. The safety and the modulating activity of sage (Salvia officinalis L.) essential oil (SEO) against the possible genotoxic effect of CCl4 were also evaluated. A combination of in vivo mutagenic endpoints was included: micronucleus (MN), apoptosis using dual acridine orange/ethidium bromide (AO/EB) staining, comet assay, chromosomal aberrations (CAs), and sperm abnormalities. Histological examination of testis tissues was also studied. The extracted SEO was subjected to gas chromatography-mass spectrometry (GC-MS) for identifying its chemical constituents. Safety/genotoxicity of SEO was determined after two consecutive weeks (5 days/week) from oral treatment with different concentrations (0.1, 0.2, and 0.4 mL/kg). For assessing genotoxicity of CCl4, both acute (once) and subacute i.p. treatment for 2 weeks (3 days/week) with the concentrations 1.2 mL/kg (for acute) and 0.8 mL/kg (for subacute) were performed. For evaluating the protective role of SEO, simultaneous treatment with SEO plus CCl4 was examined. In sperm abnormalities, mice were treated with the subject materials for five successive days and the samples were collected after 35 days from the beginning of treatment. Based on GC-MS findings, 22 components were identified in the chromatogram of SEO. The results demonstrated that the three concentrations of SEO were safe and non-genotoxic in all the tested endpoints. Negative results were also observed in bone marrow after acute and subacute treatment with CCl4. In contrast, CCl4 induced testicular DNA damage as evidenced by a significant increase of CAs in primary spermatocytes, sperm abnormalities, and histological distortion of testis. A remarkable reduction in these cells was observed in groups treated with SEO plus CCl4 especially with the two higher concentrations of SEO. In conclusion, SEO is safe and non-genotoxic under the tested conditions and can modulate genetic damage and histological alteration induced by CCl4 in the testes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óleos Voláteis / Tetracloreto de Carbono / Testes para Micronúcleos / Aberrações Cromossômicas / Ensaio Cometa / Salvia officinalis / Testes de Mutagenicidade Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óleos Voláteis / Tetracloreto de Carbono / Testes para Micronúcleos / Aberrações Cromossômicas / Ensaio Cometa / Salvia officinalis / Testes de Mutagenicidade Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article