Your browser doesn't support javascript.
loading
Probing dopant segregation in distinct cation sites at perovskite oxide polycrystal interfaces.
Yoon, Hye-In; Lee, Dong-Kyu; Bae, Hyung Bin; Jo, Gi-Young; Chung, Hee-Suk; Kim, Jin-Gyu; Kang, Suk-Joong L; Chung, Sung-Yoon.
Afiliação
  • Yoon HI; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
  • Lee DK; Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
  • Bae HB; KAIST Analysis Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
  • Jo GY; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
  • Chung HS; Jeonju Center, Korea Basic Science Institute, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Korea.
  • Kim JG; Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 34133, Korea.
  • Kang SL; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea. sjkang@kaist.ac.kr.
  • Chung SY; Korea Institute of Ceramic Engineering and Technology, 101 Soho-ro, Jinju 52851, Korea. sjkang@kaist.ac.kr.
Nat Commun ; 8(1): 1417, 2017 11 10.
Article em En | MEDLINE | ID: mdl-29127289
ABSTRACT
Although theoretical studies and experimental investigations have demonstrated the presence of space-charge-induced dopant segregation, most work has been confined largely to the crystal-free surface and some special grain boundaries, and to the best of our knowledge there has been no systematic comparison to understand how the segregation varies at different types of interfaces in polycrystals. Here, through atomic-column resolved scanning transmission electron microscopy in real polycrystalline samples, we directly elucidate the space-charge segregation features at five distinct types of interfaces in an ABO3 perovskite oxide doped with A- and B-site donors. A series of observations reveals that both the interfacial atomic structure and the subsequent segregation behaviour are invariant regardless of the interface type. The findings in this study thus suggest that the electrostatic potential variation by the interface excess charge and compensating space charge provides a crucial contribution to determining not only the distribution of dopants but also the interfacial structure in oxides.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article