Your browser doesn't support javascript.
loading
High-Performance As-Cast Nonfullerene Polymer Solar Cells with Thicker Active Layer and Large Area Exceeding 11% Power Conversion Efficiency.
Fan, Qunping; Wang, Yan; Zhang, Maojie; Wu, Bo; Guo, Xia; Jiang, Yufeng; Li, Wanbin; Guo, Bing; Ye, Chennan; Su, Wenyan; Fang, Jin; Ou, Xuemei; Liu, Feng; Wei, Zhixiang; Sum, Tze Chien; Russell, Thomas P; Li, Yongfang.
Afiliação
  • Fan Q; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Wang Y; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Zhang M; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Wu B; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371.
  • Guo X; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Jiang Y; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Li W; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Guo B; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Ye C; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Su W; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Fang J; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Ou X; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Liu F; Department of Physics and Astronomy, Shanghai Jiaotong University, Shanghai, 200240, China.
  • Wei Z; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
  • Sum TC; Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371.
  • Russell TP; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Li Y; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
Adv Mater ; 30(6)2018 Feb.
Article em En | MEDLINE | ID: mdl-29235212
ABSTRACT
In this work, a nonfullerene polymer solar cell (PSC) based on a wide bandgap polymer donor PM6 containing fluorinated thienyl benzodithiophene (BDT-2F) unit and a narrow bandgap small molecule acceptor 2,2'-((2Z,2'Z)-((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b5,6-b']dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IDIC) is developed. In addition to matched energy levels and complementary absorption spectrum with IDIC, PM6 possesses high crystallinity and strong π-π stacking alignment, which are favorable to charge carrier transport and hence suppress recombination in devices. As a result, the PM6IDIC-based PSCs without extra treatments show an outstanding power conversion efficiency (PCE) of 11.9%, which is the record value for the as-cast PSC devices reported in the literature to date. Moreover, the device performances are insensitive to the active layer thickness (≈95-255 nm) and device area (0.20-0.81 cm2 ) with PCEs of over 11%. Besides, the PM6IDIC-based flexible PSCs with a large device area of 1.25 cm2 exhibit a high PCE of 6.54%. These results indicate that the PM6IDIC blend is a promising candidate for future roll-to-roll mass manufacturing and practical application of highly efficient PSCs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article