Your browser doesn't support javascript.
loading
Interplay of spectral diffusion and phonon-broadening in individual photo-emitters: the case of carbon nanotubes.
Jeantet, A; Chassagneux, Y; Claude, T; Lauret, J S; Voisin, C.
Afiliação
  • Jeantet A; Laboratoire Pierre Aigrain, École Normale Supérieure, PSL, CNRS, Université Pierre et Marie Curie, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, 24, rue Lhomond, F-75005 Paris, France. christophe.voisin@lpa.ens.fr.
Nanoscale ; 10(2): 683-689, 2018 Jan 03.
Article em En | MEDLINE | ID: mdl-29242889
At cryogenic temperatures, the photoluminescence (PL) spectrum of nano-emitters may still be significantly broadened due to interactions with the environment. The interplay of spectral diffusion (SD) and phonon broadening in this context is still a debated issue. Singlewall carbon nanotubes (SWNTs) are a particularly relevant system to address this topic as they show intense spectral diffusion and undergo a high exciton-phonon coupling due to their one-dimensional geometry. Here, we investigate the correlations between the spectral diffusion of the main line and that of the wings in SWNTs quantitatively and demonstrate that the photoluminescence spectrum undergoes spectral jumps as a whole, without distortions. This behavior suggests that the spectral shape of SWNT PL is defined by exciton-phonon interactions and that spectral diffusion results in an additional flat broadening. The methodology developed here can be used to investigate a broad range of non-Lorentzian emitters undergoing spectral diffusion.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article