Your browser doesn't support javascript.
loading
Molecular characteristics of stress overshoot for polymer melts under start-up shear flow.
Jeong, Sohdam; Kim, Jun Mo; Baig, Chunggi.
Afiliação
  • Jeong S; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-798, South Korea.
  • Kim JM; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-798, South Korea.
  • Baig C; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-798, South Korea.
J Chem Phys ; 147(23): 234901, 2017 Dec 21.
Article em En | MEDLINE | ID: mdl-29272944
ABSTRACT
Stress overshoot is one of the most important nonlinear rheological phenomena exhibited by polymeric liquids undergoing start-up shear at sufficient flow strengths. Despite considerable previous research, the fundamental molecular characteristics underlying stress overshoot remain unknown. Here, we analyze the intrinsic molecular mechanisms behind the overshoot phenomenon using atomistic nonequilibrium molecular dynamics simulations of entangled linear polyethylene melts under shear flow. Through a detailed analysis of the transient rotational chain dynamics, we identify an intermolecular collision angular regime in the vicinity of the chain orientation angle θ ≈ 20° with respect to the flow direction. The shear stress overshoot occurs via strong intermolecular collisions between chains in the collision regime at θ = 15°-25°, corresponding to a peak strain of 2-4, which is an experimentally well-known value. The normal stress overshoot appears at approximately θ = 10°, at a corresponding peak strain roughly equivalent to twice that for the shear stress. We provide plausible answers to several basic questions regarding the stress overshoot, which may further help understand other nonlinear phenomena of polymeric systems.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article