Your browser doesn't support javascript.
loading
PCAF-mediated acetylation of Lin28B increases let-7 biogenesis in lung adenocarcinoma H1299 cells.
Qu, Ting-Ting; Chen, Fei; Wang, Jing; Zhang, Yan-Jun; Cheng, Mo-Bin; Sun, Wen-Zheng; Shen, Yu-Fei; Zhang, Ye.
Afiliação
  • Qu TT; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan Santiao, Beijing, 100005, China.
  • Chen F; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan Santiao, Beijing, 100005, China.
  • Wang J; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan Santiao, Beijing, 100005, China.
  • Zhang YJ; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan Santiao, Beijing, 100005, China.
  • Cheng MB; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan Santiao, Beijing, 100005, China.
  • Sun WZ; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan Santiao, Beijing, 100005, China.
  • Shen YF; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan Santiao, Beijing, 100005, China.
  • Zhang Y; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan Santiao, Beijing, 100005, China. yezhang@ibms.pumc.edu
BMC Cancer ; 18(1): 27, 2018 01 04.
Article em En | MEDLINE | ID: mdl-29301498
ABSTRACT

BACKGROUND:

Lin28B and its paralog Lin28A are small RNA binding proteins that have similar inhibitory effects, although they target separate steps in the maturation of let-7 miRNAs in mammalian cells. Because Lin28B participates in the promotion and development of tumors mostly by blocking the let-7 tumor suppressor family members, we sought to explore the associated mechanisms to gain insights into how Lin28B might be decreased in human cancer cells to increase let-7 levels and reverse malignancy.

RESULTS:

We demonstrated that the histone acetyltransferase PCAF, via its cold shock domain, directly interacts with and subsequently acetylates Lin28B in lung adenocarcinoma-derived H1299 cells. RT-qPCR assays showed that both let-7a-1 and let-7g were increased in PCAF-transfected H1299 cells. Lin28B is acetylated by ectopic PCAF and translocates from the nucleus to the cytoplasm in H1299 cells.

CONCLUSIONS:

The effects of acetylated Lin28B on let-7a-1 and let-7g are similar to that of stable knockdown of Lin28B in H1299 cells. The new role of PCAF in mediating Lin28B acetylation and the specific release of its target microRNAs in H1299 cells may shed light on the potential application of let-7 in the clinical treatment of lung cancer patients.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adenocarcinoma / Proteínas de Ligação a RNA / MicroRNAs / Fatores de Transcrição de p300-CBP / Neoplasias Pulmonares Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adenocarcinoma / Proteínas de Ligação a RNA / MicroRNAs / Fatores de Transcrição de p300-CBP / Neoplasias Pulmonares Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article