Your browser doesn't support javascript.
loading
TRPV4 (Transient Receptor Potential Vanilloid 4) Channel-Dependent Negative Feedback Mechanism Regulates Gq Protein-Coupled Receptor-Induced Vasoconstriction.
Hong, Kwangseok; Cope, Eric L; DeLalio, Leon J; Marziano, Corina; Isakson, Brant E; Sonkusare, Swapnil K.
Afiliação
  • Hong K; From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville.
  • Cope EL; From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville.
  • DeLalio LJ; From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville.
  • Marziano C; From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville.
  • Isakson BE; From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville.
  • Sonkusare SK; From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville. sks2n@vi
Arterioscler Thromb Vasc Biol ; 38(3): 542-554, 2018 03.
Article em En | MEDLINE | ID: mdl-29301784
ABSTRACT

OBJECTIVE:

Several physiological stimuli activate smooth muscle cell (SMC) GqPCRs (Gq protein-coupled receptors) to cause vasoconstriction. As a protective mechanism against excessive vasoconstriction, SMC GqPCR stimulation invokes endothelial cell vasodilatory signaling. Whether Ca2+ influx in endothelial cells contributes to the regulation of GqPCR-induced vasoconstriction remains unknown. Ca2+ influx through TRPV4 (transient receptor potential vanilloid 4) channels is a key regulator of endothelium-dependent vasodilation. We hypothesized that SMC GqPCR stimulation engages endothelial TRPV4 channels to limit vasoconstriction. APPROACH AND

RESULTS:

Using high-speed confocal microscopy to record unitary Ca2+ influx events through TRPV4 channels (TRPV4 sparklets), we report that activation of SMC α1ARs (alpha1-adrenergic receptors) with phenylephrine or thromboxane A2 receptors with U46619 stimulated TRPV4 sparklets in the native endothelium from mesenteric arteries. Activation of endothelial TRPV4 channels did not require an increase in Ca2+ as indicated by the lack of effect of L-type Ca2+ channel activator or chelator of intracellular Ca2+ EGTA-AM. However, gap junction communication between SMCs and endothelial cells was required for phenylephrine activation or U46619 activation of endothelial TRPV4 channels. Lowering inositol 1,4,5-trisphosphate levels with phospholipase C inhibitor or lithium chloride suppressed phenylephrine activation of endothelial TRPV4 sparklets. Moreover, uncaging inositol 1,4,5-trisphosphate profoundly increased TRPV4 sparklet activity. In pressurized arteries, phenylephrine-induced vasoconstriction was followed by a slow, TRPV4-dependent vasodilation, reflecting activation of negative regulatory mechanism. Consistent with these data, phenylephrine induced a significantly higher increase in blood pressure in TRPV4-/- mice.

CONCLUSIONS:

These results demonstrate that SMC GqPCR stimulation triggers inositol 1,4,5-trisphosphate-dependent activation of endothelial TRPV4 channels to limit vasoconstriction.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vasoconstrição / Endotélio Vascular / Cálcio / Receptores Adrenérgicos alfa 1 / Sinalização do Cálcio / Receptores de Tromboxano A2 e Prostaglandina H2 / Canais de Cátion TRPV / Músculo Liso Vascular Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vasoconstrição / Endotélio Vascular / Cálcio / Receptores Adrenérgicos alfa 1 / Sinalização do Cálcio / Receptores de Tromboxano A2 e Prostaglandina H2 / Canais de Cátion TRPV / Músculo Liso Vascular Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article