Your browser doesn't support javascript.
loading
Two-step estimation in ratio-of-mediator-probability weighted causal mediation analysis.
Bein, Edward; Deutsch, Jonah; Hong, Guanglei; Porter, Kristin E; Qin, Xu; Yang, Cheng.
Afiliação
  • Bein E; Food and Drug Administration, MD, USA.
  • Deutsch J; Mathematica Policy Research, IL, USA.
  • Hong G; University of Chicago, IL, USA.
  • Porter KE; MDRC, CA, USA.
  • Qin X; University of Chicago, IL, USA.
  • Yang C; National Opinion Research Center, IL, USA.
Stat Med ; 37(8): 1304-1324, 2018 04 15.
Article em En | MEDLINE | ID: mdl-29322536
This study investigates appropriate estimation of estimator variability in the context of causal mediation analysis that employs propensity score-based weighting. Such an analysis decomposes the total effect of a treatment on the outcome into an indirect effect transmitted through a focal mediator and a direct effect bypassing the mediator. Ratio-of-mediator-probability weighting estimates these causal effects by adjusting for the confounding impact of a large number of pretreatment covariates through propensity score-based weighting. In step 1, a propensity score model is estimated. In step 2, the causal effects of interest are estimated using weights derived from the prior step's regression coefficient estimates. Statistical inferences obtained from this 2-step estimation procedure are potentially problematic if the estimated standard errors of the causal effect estimates do not reflect the sampling uncertainty in the estimation of the weights. This study extends to ratio-of-mediator-probability weighting analysis a solution to the 2-step estimation problem by stacking the score functions from both steps. We derive the asymptotic variance-covariance matrix for the indirect effect and direct effect 2-step estimators, provide simulation results, and illustrate with an application study. Our simulation results indicate that the sampling uncertainty in the estimated weights should not be ignored. The standard error estimation using the stacking procedure offers a viable alternative to bootstrap standard error estimation. We discuss broad implications of this approach for causal analysis involving propensity score-based weighting.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ensaios Clínicos Controlados Aleatórios como Assunto / Causalidade / Análise de Regressão / Interpretação Estatística de Dados / Pontuação de Propensão Tipo de estudo: Clinical_trials / Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ensaios Clínicos Controlados Aleatórios como Assunto / Causalidade / Análise de Regressão / Interpretação Estatística de Dados / Pontuação de Propensão Tipo de estudo: Clinical_trials / Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article