Your browser doesn't support javascript.
loading
Landmark detection in 2D bioimages for geometric morphometrics: a multi-resolution tree-based approach.
Vandaele, Rémy; Aceto, Jessica; Muller, Marc; Péronnet, Frédérique; Debat, Vincent; Wang, Ching-Wei; Huang, Cheng-Ta; Jodogne, Sébastien; Martinive, Philippe; Geurts, Pierre; Marée, Raphaël.
Afiliação
  • Vandaele R; Montefiore Institute, Department of Electrical engineering and Computer Science., University of Liège, Liège, 4000, Belgium. remy.vandaele@ulg.ac.be.
  • Aceto J; Laboratory for Organogenesis and Regeneration, GIGA-Research, University of Liège, Liège, 4000, Belgium.
  • Muller M; Laboratory for Organogenesis and Regeneration, GIGA-Research, University of Liège, Liège, 4000, Belgium.
  • Péronnet F; Institut de Biologie Paris-Seine (IBPS), UMR7622, Laboratoire de Biologie du Développement, UPMC Univ Paris 06, Paris, F-75005, France.
  • Debat V; Institut de Systématique, Evolution, Biodiversité, ISYEB UMR 7205 (CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, F-75005, France.
  • Wang CW; Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
  • Huang CT; Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
  • Jodogne S; Department of Medical Physics, University Hospital (CHU) of Liège, University of Liège, Liège, 4000, Belgium.
  • Martinive P; Department of Medical Physics, University Hospital (CHU) of Liège, University of Liège, Liège, 4000, Belgium.
  • Geurts P; Montefiore Institute, Department of Electrical engineering and Computer Science., University of Liège, Liège, 4000, Belgium.
  • Marée R; Montefiore Institute, Department of Electrical engineering and Computer Science., University of Liège, Liège, 4000, Belgium.
Sci Rep ; 8(1): 538, 2018 01 11.
Article em En | MEDLINE | ID: mdl-29323201
The detection of anatomical landmarks in bioimages is a necessary but tedious step for geometric morphometrics studies in many research domains. We propose variants of a multi-resolution tree-based approach to speed-up the detection of landmarks in bioimages. We extensively evaluate our method variants on three different datasets (cephalometric, zebrafish, and drosophila images). We identify the key method parameters (notably the multi-resolution) and report results with respect to human ground truths and existing methods. Our method achieves recognition performances competitive with current existing approaches while being generic and fast. The algorithms are integrated in the open-source Cytomine software and we provide parameter configuration guidelines so that they can be easily exploited by end-users. Finally, datasets are readily available through a Cytomine server to foster future research.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pesos e Medidas Corporais / Processamento de Imagem Assistida por Computador Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pesos e Medidas Corporais / Processamento de Imagem Assistida por Computador Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article