Your browser doesn't support javascript.
loading
Metabolic Abnormalities of Erythrocytes as a Risk Factor for Alzheimer's Disease.
Kosenko, Elena A; Tikhonova, Lyudmila A; Montoliu, Carmina; Barreto, George E; Aliev, Gjumrakch; Kaminsky, Yury G.
Afiliação
  • Kosenko EA; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.
  • Tikhonova LA; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.
  • Montoliu C; Fundación Investigación Hospital Clínico, INCLIVA Instituto Investigación Sanitaria, Valencia, Spain.
  • Barreto GE; Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
  • Aliev G; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
  • Kaminsky YG; GALLY International Biomedical Research Institute Inc., San Antonio, TX, United States.
Front Neurosci ; 11: 728, 2017.
Article em En | MEDLINE | ID: mdl-29354027
ABSTRACT
Alzheimer's disease (AD) is a slowly progressive, neurodegenerative disorder of uncertain etiology. According to the amyloid cascade hypothesis, accumulation of non-soluble amyloid ß peptides (Aß) in the Central Nervous System (CNS) is the primary cause initiating a pathogenic cascade leading to the complex multilayered pathology and clinical manifestation of the disease. It is, therefore, not surprising that the search for mechanisms underlying cognitive changes observed in AD has focused exclusively on the brain and Aß-inducing synaptic and dendritic loss, oxidative stress, and neuronal death. However, since Aß depositions were found in normal non-demented elderly people and in many other pathological conditions, the amyloid cascade hypothesis was modified to claim that intraneuronal accumulation of soluble Aß oligomers, rather than monomer or insoluble amyloid fibrils, is the first step of a fatal cascade in AD. Since a characteristic reduction of cerebral perfusion and energy metabolism occurs in patients with AD it is suggested that capillary distortions commonly found in AD brain elicit hemodynamic changes that alter the delivery and transport of essential nutrients, particularly glucose and oxygen to neuronal and glial cells. Another important factor in tissue oxygenation is the ability of erythrocytes (red blood cells, RBC) to transport and deliver oxygen to tissues, which are first of all dependent on the RBC antioxidant and energy metabolism, which finally regulates the oxygen affinity of hemoglobin. In the present review, we consider the possibility that metabolic and antioxidant defense alterations in the circulating erythrocyte population can influence oxygen delivery to the brain, and that these changes might be a primary mechanism triggering the glucose metabolism disturbance resulting in neurobiological changes observed in the AD brain, possibly related to impaired cognitive function. We also discuss the possibility of using erythrocyte biochemical aberrations as potential tools that will help identify a risk factor for AD.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article