Your browser doesn't support javascript.
loading
Pairwise domain adaptation module for CNN-based 2-D/3-D registration.
Zheng, Jiannan; Miao, Shun; Jane Wang, Z; Liao, Rui.
Afiliação
  • Zheng J; Siemens Healthineers, Princeton, New Jersey, United States.
  • Miao S; University of British Columbia, Faculty of Applied Science, Department of Electrical and Computer Engineering, Vancouver, British Columbia, Canada.
  • Jane Wang Z; Siemens Healthineers, Princeton, New Jersey, United States.
  • Liao R; University of British Columbia, Faculty of Applied Science, Department of Electrical and Computer Engineering, Vancouver, British Columbia, Canada.
J Med Imaging (Bellingham) ; 5(2): 021204, 2018 Apr.
Article em En | MEDLINE | ID: mdl-29376104
ABSTRACT
Accurate two-dimensional to three-dimensional (2-D/3-D) registration of preoperative 3-D data and intraoperative 2-D x-ray images is a key enabler for image-guided therapy. Recent advances in 2-D/3-D registration formulate the problem as a learning-based approach and exploit the modeling power of convolutional neural networks (CNN) to significantly improve the accuracy and efficiency of 2-D/3-D registration. However, for surgery-related applications, collecting a large clinical dataset with accurate annotations for training can be very challenging or impractical. Therefore, deep learning-based 2-D/3-D registration methods are often trained with synthetically generated data, and a performance gap is often observed when testing the trained model on clinical data. We propose a pairwise domain adaptation (PDA) module to adapt the model trained on source domain (i.e., synthetic data) to target domain (i.e., clinical data) by learning domain invariant features with only a few paired real and synthetic data. The PDA module is designed to be flexible for different deep learning-based 2-D/3-D registration frameworks, and it can be plugged into any pretrained CNN model such as a simple Batch-Norm layer. The proposed PDA module has been quantitatively evaluated on two clinical applications using different frameworks of deep networks, demonstrating its significant advantages of generalizability and flexibility for 2-D/3-D medical image registration when a small number of paired real-synthetic data can be obtained.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article