Your browser doesn't support javascript.
loading
Tyrosine phosphorylation switching of a G protein.
Li, Bo; Tunc-Ozdemir, Meral; Urano, Daisuke; Jia, Haiyan; Werth, Emily G; Mowrey, David D; Hicks, Leslie M; Dokholyan, Nikolay V; Torres, Matthew P; Jones, Alan M.
Afiliação
  • Li B; Departments of Biology, Chapel Hill, North Carolina 27599.
  • Tunc-Ozdemir M; Departments of Biology, Chapel Hill, North Carolina 27599.
  • Urano D; Departments of Biology, Chapel Hill, North Carolina 27599; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore.
  • Jia H; Departments of Biology, Chapel Hill, North Carolina 27599.
  • Werth EG; Department of Chemistry, Chapel Hill, North Carolina 27599.
  • Mowrey DD; Biochemistry/Biophysics, Chapel Hill, North Carolina 27599.
  • Hicks LM; Department of Chemistry, Chapel Hill, North Carolina 27599.
  • Dokholyan NV; Biochemistry/Biophysics, Chapel Hill, North Carolina 27599.
  • Torres MP; Department of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332.
  • Jones AM; Departments of Biology, Chapel Hill, North Carolina 27599; Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599. Electronic address: alan_jones@unc.edu.
J Biol Chem ; 293(13): 4752-4766, 2018 03 30.
Article em En | MEDLINE | ID: mdl-29382719
ABSTRACT
Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr166-dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching."
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Proteína Pós-Traducional / Arabidopsis / Proteínas RGS / Proteínas de Arabidopsis / Subunidades alfa de Proteínas de Ligação ao GTP Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Proteína Pós-Traducional / Arabidopsis / Proteínas RGS / Proteínas de Arabidopsis / Subunidades alfa de Proteínas de Ligação ao GTP Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article