Your browser doesn't support javascript.
loading
Megawatt peak power tunable femtosecond source based on self-phase modulation enabled spectral selection.
Opt Express ; 26(3): 3684-3695, 2018 Feb 05.
Article em En | MEDLINE | ID: mdl-29401895
ABSTRACT
Wavelength widely tunable femtosecond sources can be implemented by optically filtering the leftmost/rightmost spectral lobes of a broadened spectrum due to self-phase modulation (SPM) dominated fiber-optic nonlinearities. We numerically and experimentally investigate the feasibility of implementing such a tunable source inside optical fibers with negative group-velocity dispersion (GVD). We show that the spectral broadening prior to soliton fission is dominated by SPM and generates well-isolated spectral lobes; filtering the leftmost/rightmost spectral lobes results in energetic femtosecond pulses with the wavelength tuning range more than 400 nm. Employing an ultrafast Er-fiber laser and a dispersion-shifted fiber with negative GVD, we implement an energetic tunable source that produces ~100-fs pulses tunable between 1.3 µm and 1.7 µm with up to ~16-nJ pulse energy. Further energy scaling is achieved by increasing the input pulse energy to ~1-µJ and reducing the fiber length to 1.3 cm. The resulting source can produce >100-nJ femtosecond pulses at 1.3 µm and 1.7 µm with MW level peak power, representing an order of magnitude improvement of our previous results. Such a powerful source covers the 2nd and the 3rd biological transmission window and can facilitate multiphoton deep-tissue imaging.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article