Your browser doesn't support javascript.
loading
Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles.
Zhang, Ning; Zoltner, Martin; Leung, Ka-Fai; Scullion, Paul; Hutchinson, Sebastian; Del Pino, Ricardo C; Vincent, Isabel M; Zhang, Yong-Kang; Freund, Yvonne R; Alley, Michael R K; Jacobs, Robert T; Read, Kevin D; Barrett, Michael P; Horn, David; Field, Mark C.
Afiliação
  • Zhang N; Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
  • Zoltner M; Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
  • Leung KF; Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
  • Scullion P; Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
  • Hutchinson S; Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
  • Del Pino RC; Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
  • Vincent IM; Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
  • Zhang YK; Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America.
  • Freund YR; Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America.
  • Alley MRK; Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America.
  • Jacobs RT; Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America.
  • Read KD; Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
  • Barrett MP; Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
  • Horn D; Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
  • Field MC; Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
PLoS Pathog ; 14(2): e1006850, 2018 02.
Article em En | MEDLINE | ID: mdl-29425238
ABSTRACT
Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in Trypanosoma brucei. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tripanossomicidas / Trypanosoma brucei brucei / Compostos de Boro / Pró-Fármacos / Amina Oxidase (contendo Cobre) / Aldeído Desidrogenase / Modelos Biológicos Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tripanossomicidas / Trypanosoma brucei brucei / Compostos de Boro / Pró-Fármacos / Amina Oxidase (contendo Cobre) / Aldeído Desidrogenase / Modelos Biológicos Idioma: En Ano de publicação: 2018 Tipo de documento: Article