Your browser doesn't support javascript.
loading
17α-Ethynylestradiol biodegradation in different river-based groundwater recharge modes with reclaimed water and degradation-associated community structure of bacteria and archaea.
Ma, Weifang; Sun, Jiaji; Li, Yangyao; Lun, Xiaoxiu; Shan, Dan; Nie, Chao; Liu, Miaomiao.
Afiliação
  • Ma W; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China. Electronic address: mpeggy@163.com.
  • Sun J; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
  • Li Y; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
  • Lun X; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
  • Shan D; Friendship Center for Environmental Protection, Beijing 100029, China.
  • Nie C; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
  • Liu M; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2352, USA.
J Environ Sci (China) ; 64: 51-61, 2018 Feb.
Article em En | MEDLINE | ID: mdl-29478661
This study investigated 17α-ethynylestradiol (EE2) biodegradation process and primary metabolic pathways associated with community structures of microorganism during groundwater recharge using reclaimed water. The attenuation rate is 1.58 times higher in wetting and drying alternative recharge (WDAR) than in continual recharge (CR). The primary biotransformation pathways of EE2 in WDAR system began with the oxidation of C-17 on ring D to form a ketone group, and D-ring was subsequently hydroxylated and cleaved. In the CR system, the metabolic pathway changed from the oxidation of C-17 on ring D to hydroxylation of C-4 on ring A, and ring A or B subsequently cleaved; this transition was related to DO, and the microbial community structure. Four hundred fifty four pyrosequencing of 16s rRNA genes indicated that the bacterial communities in the upper layer of the WDAR system were more diverse than those found in the bottom layer of the CR system; this result was reversed for archaea. Unweighted UniFrac and taxonomic analyses were conducted to relate the change in bacterial community structure to the metabolic pathway. Microorganism community diversity and structure were related to the concentrations of dissolved oxygen, EE2 and its intermediates in the system. Five known bacterial classes and one known archaeal class, five major bacterial genera and one major archaeal genus might be involved in EE2 degradation. The findings of this study provide an understanding of EE2 biodegradation in groundwater recharge areas under different recharging modes and can facilitate the prediction of the fate of EE2 in underground aquifers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Água Subterrânea / Rios / Etinilestradiol Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Água Subterrânea / Rios / Etinilestradiol Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article