Your browser doesn't support javascript.
loading
Effect of sulfonation degree on molecular weight, thermal stability, and proton conductivity of poly(arylene ether sulfone)s membrane.
Pirali-Hamedani, Majid; Mehdipour-Ataei, Shahram.
Afiliação
  • Pirali-Hamedani M; Polyurethane and Advanced Polymeric Materials Department, Iran Polymer and Petrochemical Institute, Tehran, Iran.
  • Mehdipour-Ataei S; Polyurethane and Advanced Polymeric Materials Department, Iran Polymer and Petrochemical Institute, Tehran, Iran.
Des Monomers Polym ; 20(1): 54-65, 2017.
Article em En | MEDLINE | ID: mdl-29491779
ABSTRACT
Direct copolymerization of sulfonated and non-sulfonated difluorodiphenyl sulfones as dihalide monomers with hydroquinone and also 4,4'-(4,4'-sulfonylbis-(1,4-phenylene)bis(oxy)) diphenol as diols led to preparation of two series of poly(arylene ether sulfone)s. Copolymers with different degrees of sulfonation (40, 50 and 60%) were synthesized in order to evaluate their potential for fuel cell application. 1H-NMR, FT-IR, and mass spectroscopy were used for characterization of prepared monomers and copolymers. Differential scanning calorimetry and thermogravimetric analysis were applied for investigation and comparison of the thermal properties of copolymers. Laser light scattering (LLS) was employed to calculate zeta potential, conductivity, and molecular weight of copolymers. Copolymers were obtained in high and sufficient molecular weight that was basic need to reach reasonable physical and thermal properties for applications as fuel cell membrane. The effect of similar structural repeating units with different sizes on the final properties of sulfonated poly(ether sulfone)s was investigated to compare their potential in fuel cell membrane.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article