Your browser doesn't support javascript.
loading
Predicting the effects of parasite co-infection across species boundaries.
Lello, Joanne; McClure, Susan J; Tyrrell, Kerri; Viney, Mark E.
Afiliação
  • Lello J; School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK lelloj@cardiff.ac.uk.
  • McClure SJ; Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trentino 38010, Italy.
  • Tyrrell K; Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia.
  • Viney ME; Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia.
Proc Biol Sci ; 285(1874)2018 03 14.
Article em En | MEDLINE | ID: mdl-29540516
It is normal for hosts to be co-infected by parasites. Interactions among co-infecting species can have profound consequences, including changing parasite transmission dynamics, altering disease severity and confounding attempts at parasite control. Despite the importance of co-infection, there is currently no way to predict how different parasite species may interact with one another, nor the consequences of those interactions. Here, we demonstrate a method that enables such prediction by identifying two nematode parasite groups based on taxonomy and characteristics of the parasitological niche. From an understanding of the interactions between the two defined groups in one host system (wild rabbits), we predict how two different nematode species, from the same defined groups, will interact in co-infections in a different host system (sheep), and then we test this experimentally. We show that, as predicted, in co-infections, the blood-feeding nematode Haemonchus contortus suppresses aspects of the sheep immune response, thereby facilitating the establishment and/or survival of the nematode Trichostrongylus colubriformis; and that the T. colubriformis-induced immune response negatively affects H. contortus This work is, to our knowledge, the first to use empirical data from one host system to successfully predict the specific outcome of a different co-infection in a second host species. The study therefore takes the first step in defining a practical framework for predicting interspecific parasite interactions in other animal systems.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças dos Ovinos / Tricostrongilose / Coinfecção / Hemoncose / Interações Hospedeiro-Parasita / Imunidade Inata Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças dos Ovinos / Tricostrongilose / Coinfecção / Hemoncose / Interações Hospedeiro-Parasita / Imunidade Inata Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article