Your browser doesn't support javascript.
loading
Improving atomic displacement and replacement calculations with physically realistic damage models.
Nordlund, Kai; Zinkle, Steven J; Sand, Andrea E; Granberg, Fredric; Averback, Robert S; Stoller, Roger; Suzudo, Tomoaki; Malerba, Lorenzo; Banhart, Florian; Weber, William J; Willaime, Francois; Dudarev, Sergei L; Simeone, David.
Afiliação
  • Nordlund K; Department of Physics, University of Helsinki, P.O.Box 43, Helsinki, FI-00014, Finland. kai.nordlund@helsinki.fi.
  • Zinkle SJ; Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
  • Sand AE; Materials Science & Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
  • Granberg F; Department of Physics, University of Helsinki, P.O.Box 43, Helsinki, FI-00014, Finland.
  • Averback RS; Department of Physics, University of Helsinki, P.O.Box 43, Helsinki, FI-00014, Finland.
  • Stoller R; Department of Materials Science & Engineering, University of Illinois, Urbana, IL, 61801, USA.
  • Suzudo T; Materials Science & Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
  • Malerba L; Japan Atomic Energy Agency Center for Computational Science and e-Systems, Tokai, Ibaraki, 319-1195, Japan.
  • Banhart F; SCK-CEN, Institute for Nuclear Materials Science, 2400, Mol, Belgium.
  • Weber WJ; Institut de Physique et Chimie des Matériaux, CNRS, UMR 7504, Université de Strasbourg, 67000, Strasbourg, France.
  • Willaime F; Materials Science & Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
  • Dudarev SL; Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
  • Simeone D; DEN-Département des Matériaux pour le Nucléaire, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France.
Nat Commun ; 9(1): 1084, 2018 03 14.
Article em En | MEDLINE | ID: mdl-29540689
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article