Your browser doesn't support javascript.
loading
The long non-coding RNA SNHG14 inhibits cell proliferation and invasion and promotes apoptosis by sponging miR-92a-3p in glioma.
Wang, Qiang; Teng, Yiwan; Wang, Rong; Deng, Danni; You, Yijie; Peng, Ya; Shao, Naiyuan; Zhi, Feng.
Afiliação
  • Wang Q; Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
  • Teng Y; Changzhou Center for Biotech Development, Changzhou, Jiangsu, China.
  • Wang R; Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
  • Deng D; Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
  • You Y; Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
  • Peng Y; Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
  • Shao N; Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
  • Zhi F; Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
Oncotarget ; 9(15): 12112-12124, 2018 Feb 23.
Article em En | MEDLINE | ID: mdl-29552296
Malignant glioma is one of the most common types of primary brain tumours. Long non-coding RNAs (lncRNAs) have recently emerged as a new class of therapeutic targets for many cancers. In this study, we aimed to explore the functional involvement of small nucleolar RNA host gene 14 (SNHG14) and its potential regulatory mechanism in glioma progression. SNHG14 was found to be downregulated in human glioma tissues and cell lines. SNHG14 significantly inhibited cell viability, reduced cell invasion, and induced apoptosis in glioma cell lines. Furthermore, a correlation analysis demonstrated that there was a negative correlation between SNHG14 expression and miR-92a-3p expression. Bioinformatics prediction and luciferase reporter assays demonstrated that miR-92a-3p could directly bind to SNHG14. miR-92a-3p was significantly upregulated in glioma and acted as an oncogene in glioma cells by inhibiting Bim. Moreover, mechanistic investigations showed that miR-92a-3p could reverse the tumour suppressive effects induced by SNHG14 in glioma, indicating that SNHG14 may act as an endogenous sponge that competes for binding to miR-92a-3p. Our results suggest that SNHG14 and miR-92a-3p may be promising molecular targets for glioma therapy.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article