Your browser doesn't support javascript.
loading
HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis.
Hernandez, Celine; Huebener, Peter; Pradere, Jean-Philippe; Antoine, Daniel J; Friedman, Richard A; Schwabe, Robert F.
Afiliação
  • Hernandez C; Department of Medicine, Columbia University, New York, New York, USA.
  • Huebener P; Department of Medicine, Columbia University, New York, New York, USA.
  • Pradere JP; Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  • Antoine DJ; Institut National de la Santé et de la Recherche Médicale (INSERM) U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France.
  • Friedman RA; MRC Centre for Inflammation Research, University of Edinburgh, United Kingdom.
  • Schwabe RF; Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, New York, USA.
J Clin Invest ; 128(6): 2436-2451, 2018 06 01.
Article em En | MEDLINE | ID: mdl-29558367
Cell death is a key driver of disease progression and carcinogenesis in chronic liver disease (CLD), highlighted by the well-established clinical correlation between hepatocellular death and risk for the development of cirrhosis and hepatocellular carcinoma (HCC). Moreover, hepatocellular death is sufficient to trigger fibrosis and HCC in mice. However, the pathways through which cell death drives CLD progression remain elusive. Here, we tested the hypothesis that high-mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) with key roles in acute liver injury, may link cell death to injury responses and hepatocarcinogenesis in CLD. While liver-specific HMGB1 deficiency did not significantly affect chronic injury responses such as fibrosis, regeneration, and inflammation, it inhibited ductular/progenitor cell expansion and hepatocyte metaplasia. HMGB1 promoted ductular expansion independently of active secretion in a nonautonomous fashion, consistent with its role as a DAMP. Liver-specific HMGB1 deficiency reduced HCC development in 3 mouse models of chronic injury but not in a model lacking chronic liver injury. As with CLD, HMGB1 ablation reduced the expression of progenitor and oncofetal markers, a key determinant of HCC aggressiveness, in tumors. In summary, HMGB1 links hepatocyte death to ductular reaction, progenitor signature, and hepatocarcinogenesis in CLD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco Neoplásicas / Carcinoma Hepatocelular / Hepatócitos / Proteína HMGB1 / Cirrose Hepática / Neoplasias Hepáticas / Proteínas de Neoplasias Limite: Animals / Child, preschool / Female / Humans / Male Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco Neoplásicas / Carcinoma Hepatocelular / Hepatócitos / Proteína HMGB1 / Cirrose Hepática / Neoplasias Hepáticas / Proteínas de Neoplasias Limite: Animals / Child, preschool / Female / Humans / Male Idioma: En Ano de publicação: 2018 Tipo de documento: Article