Inhibitory effect of sinigrin on adipocyte differentiation in 3T3-L1 cells: Involvement of AMPK and MAPK pathways.
Biomed Pharmacother
; 102: 670-680, 2018 Jun.
Article
em En
| MEDLINE
| ID: mdl-29604586
Adipocyte differentiation is a critical adaptive response to nutritional overload and affects the metabolic outcome of obesity. Sinigrin (2-propenyl glucosinolate) is a glucosinolate belong to the glucoside contained in broccoli, brussels sprouts, and black mustard seeds. We investigated the effects of sinigrin on adipogenesis in 3T3-L1 preadipocytes and its underlying mechanisms. Sinigrin remarkably inhibited the accumulation of lipid droplets and adipogenesis by downregulating the expression of CCAAT-enhancer-binding protein α (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), leptin and aP2. Sinigrin arrested cells in the G0/G1 phase of the cell cycle and increased the expression of p21 and p27. CDK2 expression was suppressed by sinigirn in MDI-induced adipocytes. Sinigrin increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and acetyl-CoA carboxylase (ACC) in the early stage of adipocyte differentiation, suggesting that sinigrin has anti-adipogenic effects through AMPK, MAPK and ACC activation. Sinigrin also inhibited the production of pro-inflammatory cytokines including tumor necrosis factor -alpha (TNF-α) and interleukin (IL)-6, IL-1ß and IL-18. Taken together, these data suggest that sinigrin inhibits early-stage adipogenesis of 3T3-L1 adipocytes through the AMPK and MAPK signaling pathways.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Diferenciação Celular
/
Adipócitos
/
Sistema de Sinalização das MAP Quinases
/
Proteínas Quinases Ativadas por AMP
/
Glucosinolatos
Limite:
Animals
Idioma:
En
Ano de publicação:
2018
Tipo de documento:
Article