Your browser doesn't support javascript.
loading
Electrically-receptive and thermally-responsive paper-based sensor chip for rapid detection of bacterial cells.
Khan, Muhammad S; Misra, Santosh K; Dighe, Ketan; Wang, Zhen; Schwartz-Duval, Aaron S; Sar, Dinabandhu; Pan, Dipanjan.
Afiliação
  • Khan MS; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.
  • Misra SK; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA. Electronic address: santoshchem59@gmail.com.
  • Dighe K; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.
  • Wang Z; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.
  • Schwartz-Duval AS; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.
  • Sar D; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.
  • Pan D; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA; Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, IL, USA; Department of Materials Sci
Biosens Bioelectron ; 110: 132-140, 2018 Jul 01.
Article em En | MEDLINE | ID: mdl-29605712
ABSTRACT
Although significant technological advancements have been made in the development of analytical biosensor chips for detecting bacterial strains (E. coli, S. Mutans and B. Subtilis), critical requirements i.e. limit of detection (LOD), fast time of response, ultra-sensitivity with high reproducibility and good shelf-life with robust sensing capability have yet to be met within a single sensor chip. In order to achieve these criteria, we present an electrically-receptive thermally-responsive (ER-TR) sensor chip comprised of simple filter paper used as substrate coated with composite of poly(N-isopropylacrylamide) polymer (PNIPAm) - graphene nanoplatelet (GR) followed by evaporation of Au electrodes for capturing both Gram-positive (S. mutans and B. subtilis) and Gram-negative (E. coli) bacterial cells in real-time. Autoclave water, tap water, lake water and milk samples were tested with ER-TR chip with and without bacterial strains at varying concentration range 101-105 cells/mL. The sensor was integrated with in-house built printed circuit board (PCB) to transmit/receive electrical signals. The interaction of E. coli, S. mutans and B. subtilis cells with fibers of PNIPAm-GR resulted in a change of electrical resistance and the readout was monitored wirelessly in real-time using MATLAB algorithm. Finally, prepared ER-TR chip exhibited the reproducibility of 85-97% with shelf-life of up to four weeks after testing with lake water sample.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Streptococcus mutans / Bacillus subtilis / Técnicas Biossensoriais / Lagos / Leite / Escherichia coli / Grafite Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Streptococcus mutans / Bacillus subtilis / Técnicas Biossensoriais / Lagos / Leite / Escherichia coli / Grafite Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article