Your browser doesn't support javascript.
loading
A comparison of the convolution and TMR10 treatment planning algorithms for Gamma Knife® radiosurgery.
Fallows, Peter; Wright, Gavin; Harrold, Natalie; Bownes, Peter.
Afiliação
  • Fallows P; Leeds Cancer Centre, Leeds Teaching Hospitals, Leeds, United Kingdom.
  • Wright G; Leeds Cancer Centre, Leeds Teaching Hospitals, Leeds, United Kingdom.
  • Harrold N; Leeds Cancer Centre, Leeds Teaching Hospitals, Leeds, United Kingdom.
  • Bownes P; Leeds Cancer Centre, Leeds Teaching Hospitals, Leeds, United Kingdom.
J Radiosurg SBRT ; 5(2): 157-167, 2018.
Article em En | MEDLINE | ID: mdl-29657896
ABSTRACT

AIMS:

To compare the accuracies of the convolution and TMR10 Gamma Knife treatment planning algorithms, and assess the impact upon clinical practice of implementing convolution-based treatment planning.

METHODS:

Doses calculated by both algorithms were compared against ionisation chamber measurements in homogeneous and heterogeneous phantoms. Relative dose distributions calculated by both algorithms were compared against film-derived 2D isodose plots in a heterogeneous phantom, with distance-to-agreement (DTA) measured at the 80%, 50% and 20% isodose levels. A retrospective planning study compared 19 clinically acceptable metastasis convolution plans against TMR10 plans with matched shot times, allowing novel comparison of true dosimetric parameters rather than total beam-on-time. Gamma analysis and dose-difference analysis were performed on each pair of dose distributions.

RESULTS:

Both algorithms matched point dose measurement within ±1.1% in homogeneous conditions. Convolution provided superior point-dose accuracy in the heterogeneous phantom (-1.1% v 4.0%), with no discernible differences in relative dose distribution accuracy. In our study convolution-calculated plans yielded D99% 6.4% (95% CI5.5%-7.3%,p<0.001) less than shot matched TMR10 plans. For gamma passing criteria 1%/1mm, 16% of targets had passing rates >95%. The range of dose differences in the targets was 0.2-4.6Gy.

CONCLUSIONS:

Convolution provides superior accuracy versus TMR10 in heterogeneous conditions. Implementing convolution would result in increased target doses therefore its implementation may require a revaluation of prescription doses.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article