Your browser doesn't support javascript.
loading
Degradable 3D-Printed Hydrogels Based on Star-Shaped Copolypeptides.
Murphy, Robert; Walsh, David P; Hamilton, Charles A; Cryan, Sally-Ann; In Het Panhuis, Marc; Heise, Andreas.
Afiliação
  • Murphy R; Department of Chemistry , Royal College of Surgeons in Ireland (RCSI) , 123 St. Stephens Green , Dublin 2 , Ireland.
  • Walsh DP; Drug Delivery & Advanced Materials Team, School of Pharmacy & Tissue Engineering Research Group, Department of Anatomy , Royal College of Surgeons in Ireland (RCSI) , 123 St. Stephens Green , Dublin 2 , Ireland.
  • Hamilton CA; Soft Materials Group, School of Chemistry, and Australian Research Council Centre of Excellence for Electromaterials Science , University of Wollongong , Wollongong , New South Wales 2522 , Australia.
  • Cryan SA; Trinity Centre for Bioengineering , Trinity College Dublin (TCD) , Dublin , Ireland.
  • In Het Panhuis M; Drug Delivery & Advanced Materials Team, School of Pharmacy & Tissue Engineering Research Group, Department of Anatomy , Royal College of Surgeons in Ireland (RCSI) , 123 St. Stephens Green , Dublin 2 , Ireland.
  • Heise A; Centre for Research in Medical Devices (CURAM) , RCSI, Dublin and National University of Ireland , Galway , Ireland.
Biomacromolecules ; 19(7): 2691-2699, 2018 07 09.
Article em En | MEDLINE | ID: mdl-29665336
ABSTRACT
We present a star copolypeptide-based hydrogel ink capable of structural microfabrication using 3D extrusion printing. The material comprises an amphiphilic block copolymer structure of poly(benzyl-l-glutamate)- b-oligo(l-valine), which spontaneously forms hydrogels through hydrophobic interactions. The chemical design allows the bulk phase of the hydrogel to remain intact after application of shear due to its self-recovery behavior. It is demonstrated that the composition of the materials is ideally suited for 3D printing with scaffolds capable of maintaining structural cohesion after extrusion. Post extrusion UV-triggered fixation of the printed structures is carried out, resulting in stable hydrogel constructs. The constructs were found to be degradable, exhibited favorable release of encapsulated molecular cargo, and do not appear to affect the metabolic health of the commonly used fibroblastic cell line Balb/3T3 in the absence of the reactive diluent N, N'-methylenebis(acrylamide). The star copolypeptide inks allow for rapid prototyping enabling the fabrication of defined intricate microstructures, providing a platform for complex scaffold development that would otherwise be unattainable with other processing techniques such as molding or casting.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Hidrogéis / Plásticos Biodegradáveis / Impressão Tridimensional Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Hidrogéis / Plásticos Biodegradáveis / Impressão Tridimensional Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article