Your browser doesn't support javascript.
loading
Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5' splice site.
Martínez-Pizarro, Ainhoa; Dembic, Maja; Pérez, Belén; Andresen, Brage S; Desviat, Lourdes R.
Afiliação
  • Martínez-Pizarro A; Centro de Biología Molecular Severo Ochoa UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain.
  • Dembic M; Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark.
  • Pérez B; Centro de Biología Molecular Severo Ochoa UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain.
  • Andresen BS; Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark.
  • Desviat LR; Centro de Biología Molecular Severo Ochoa UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain.
PLoS Genet ; 14(4): e1007360, 2018 04.
Article em En | MEDLINE | ID: mdl-29684050
ABSTRACT
Phenylketonuria (PKU), one of the most common inherited diseases of amino acid metabolism, is caused by mutations in the phenylalanine hydroxylase (PAH) gene. Recently, PAH exon 11 was identified as a vulnerable exon due to a weak 3' splice site, with different exonic mutations affecting exon 11 splicing through disruption of exonic splicing regulatory elements. In this study, we report a novel intron 11 regulatory element, which is involved in exon 11 splicing, as revealed by the investigated pathogenic effect of variants c.1199+17G>A and c.1199+20G>C, identified in PKU patients. Both mutations cause exon 11 skipping in a minigene system. RNA binding assays indicate that binding of U1snRNP70 to this intronic region is disrupted, concomitant with a slightly increased binding of inhibitors hnRNPA1/2. We have investigated the effect of deletions and point mutations, as well as overexpression of adapted U1snRNA to show that this splicing regulatory motif is important for regulation of correct splicing at the natural 5' splice site. The results indicate that U1snRNP binding downstream of the natural 5' splice site determines efficient exon 11 splicing, thus providing a basis for development of therapeutic strategies to correct PAH exon 11 splicing mutations. In this work, we expand the functional effects of non-canonical intronic U1 snRNP binding by showing that it may enhance exon definition and that, consequently, intronic mutations may cause exon skipping by a novel mechanism, where they disrupt stimulatory U1 snRNP binding close to the 5' splice site. Notably, our results provide further understanding of the reported therapeutic effect of exon specific U1 snRNA for splicing mutations in disease.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenilalanina Hidroxilase / Splicing de RNA / Ribonucleoproteína Nuclear Pequena U1 / Sítios de Splice de RNA / Mutação Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenilalanina Hidroxilase / Splicing de RNA / Ribonucleoproteína Nuclear Pequena U1 / Sítios de Splice de RNA / Mutação Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article