Your browser doesn't support javascript.
loading
Small molecule inhibitors and CRISPR/Cas9 mutagenesis demonstrate that SMYD2 and SMYD3 activity are dispensable for autonomous cancer cell proliferation.
Thomenius, Michael J; Totman, Jennifer; Harvey, Darren; Mitchell, Lorna H; Riera, Thomas V; Cosmopoulos, Kat; Grassian, Alexandra R; Klaus, Christine; Foley, Megan; Admirand, Elizabeth A; Jahic, Haris; Majer, Christina; Wigle, Tim; Jacques, Suzanne L; Gureasko, Jodi; Brach, Dorothy; Lingaraj, Trupti; West, Kip; Smith, Sherri; Rioux, Nathalie; Waters, Nigel J; Tang, Cuyue; Raimondi, Alejandra; Munchhof, Michael; Mills, James E; Ribich, Scott; Porter Scott, Margaret; Kuntz, Kevin W; Janzen, William P; Moyer, Mikel; Smith, Jesse J; Chesworth, Richard; Copeland, Robert A; Boriack-Sjodin, P Ann.
Afiliação
  • Thomenius MJ; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Totman J; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Harvey D; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Mitchell LH; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Riera TV; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Cosmopoulos K; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Grassian AR; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Klaus C; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Foley M; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Admirand EA; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Jahic H; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Majer C; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Wigle T; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Jacques SL; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Gureasko J; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Brach D; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Lingaraj T; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • West K; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Smith S; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Rioux N; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Waters NJ; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Tang C; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Raimondi A; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Munchhof M; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Mills JE; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Ribich S; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Porter Scott M; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Kuntz KW; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Janzen WP; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Moyer M; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Smith JJ; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Chesworth R; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Copeland RA; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
  • Boriack-Sjodin PA; Epizyme, Inc., Cambridge, Massachusetts, United States of America.
PLoS One ; 13(6): e0197372, 2018.
Article em En | MEDLINE | ID: mdl-29856759
ABSTRACT
A key challenge in the development of precision medicine is defining the phenotypic consequences of pharmacological modulation of specific target macromolecules. To address this issue, a variety of genetic, molecular and chemical tools can be used. All of these approaches can produce misleading results if the specificity of the tools is not well understood and the proper controls are not performed. In this paper we illustrate these general themes by providing detailed studies of small molecule inhibitors of the enzymatic activity of two members of the SMYD branch of the protein lysine methyltransferases, SMYD2 and SMYD3. We show that tool compounds as well as CRISPR/Cas9 fail to reproduce many of the cell proliferation findings associated with SMYD2 and SMYD3 inhibition previously obtained with RNAi based approaches and with early stage chemical probes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Histona-Lisina N-Metiltransferase / Carcinogênese / Adenocarcinoma de Pulmão Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Histona-Lisina N-Metiltransferase / Carcinogênese / Adenocarcinoma de Pulmão Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article