Your browser doesn't support javascript.
loading
Primary productivity below the seafloor at deep-sea hot springs.
McNichol, Jesse; Stryhanyuk, Hryhoriy; Sylva, Sean P; Thomas, François; Musat, Niculina; Seewald, Jeffrey S; Sievert, Stefan M.
Afiliação
  • McNichol J; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; mcnichol@alum.mit.edu ssievert@whoi.edu.
  • Stryhanyuk H; Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - Umweltforschungszentrum (UFZ), 04318 Leipzig, Germany.
  • Sylva SP; Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543.
  • Thomas F; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543.
  • Musat N; Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - Umweltforschungszentrum (UFZ), 04318 Leipzig, Germany.
  • Seewald JS; Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543.
  • Sievert SM; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; mcnichol@alum.mit.edu ssievert@whoi.edu.
Proc Natl Acad Sci U S A ; 115(26): 6756-6761, 2018 06 26.
Article em En | MEDLINE | ID: mdl-29891698
ABSTRACT
Below the seafloor at deep-sea hot springs, mixing of geothermal fluids with seawater supports a potentially vast microbial ecosystem. Although the identity of subseafloor microorganisms is largely known, their effect on deep-ocean biogeochemical cycles cannot be predicted without quantitative measurements of their metabolic rates and growth efficiency. Here, we report on incubations of subseafloor fluids under in situ conditions that quantitatively constrain subseafloor primary productivity, biomass standing stock, and turnover time. Single-cell-based activity measurements and 16S rRNA-gene analysis showed that Campylobacteria dominated carbon fixation and that oxygen concentration and temperature drove niche partitioning of closely related phylotypes. Our data reveal a very active subseafloor biosphere that fixes carbon at a rate of up to 321 µg C⋅L-1⋅d-1, turns over rapidly within tens of hours, rivals the productivity of chemosynthetic symbioses above the seafloor, and significantly influences deep-ocean biogeochemical cycling.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Organismos Aquáticos / Fontes Hidrotermais / Microbiota Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Organismos Aquáticos / Fontes Hidrotermais / Microbiota Idioma: En Ano de publicação: 2018 Tipo de documento: Article