Your browser doesn't support javascript.
loading
Self-Priming Enzymatic Fabrication of Multiply Modified DNA.
Whitfield, Colette J; Little, Rachel C; Khan, Kasid; Ijiro, Kuniharu; Connolly, Bernard A; Tuite, Eimer M; Pike, Andrew R.
Afiliação
  • Whitfield CJ; Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
  • Little RC; Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
  • Khan K; Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
  • Ijiro K; Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan.
  • Connolly BA; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
  • Tuite EM; Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
  • Pike AR; Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
Chemistry ; 24(57): 15267-15274, 2018 Oct 12.
Article em En | MEDLINE | ID: mdl-29931815
ABSTRACT
The self-priming synthesis of multiply modified DNA by the extension of repeating unit duplex "oligoseeds" provides a source of versatile DNA. Sterically-demanding nucleotides 5-Br-dUTP, 7-deaza-7-I-dATP, 6-S-dGTP, 5-I-dCTP as well as 5-(octadiynyl)-dCTP were incorporated into two extending oligoseeds; [GATC]5 /[GATC]5 and [A4 G]4 /[CT4 ]4 . The products contained modifications on one or both strands of DNA, demonstrating their recognition by the polymerase as both template (reading) and substrate (writing). Nucleobase modifications that lie in the major groove were reliably read and written by the polymerase during the extension reaction, even when bulky or in contiguous sequences. Repeat sequence DNA over 500 bp long, bearing four different modified units was produced by this method. The number, position and type of modification, as well as the overall length of the DNA can be controlled to yield designer DNA that offers sequence-determined sites for further chemical adaptations, targeted small molecule binding studies, or sensing and sequencing applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Nucleotídeos Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Nucleotídeos Idioma: En Ano de publicação: 2018 Tipo de documento: Article