Your browser doesn't support javascript.
loading
Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells.
Dastidar, Sumitava; Ardui, Simon; Singh, Kshitiz; Majumdar, Debanjana; Nair, Nisha; Fu, Yanfang; Reyon, Deepak; Samara, Ermira; Gerli, Mattia F M; Klein, Arnaud F; De Schrijver, Wito; Tipanee, Jaitip; Seneca, Sara; Tulalamba, Warut; Wang, Hui; Chai, Yoke Chin; In't Veld, Peter; Furling, Denis; Tedesco, Francesco Saverio; Vermeesch, Joris R; Joung, J Keith; Chuah, Marinee K; VandenDriessche, Thierry.
Afiliação
  • Dastidar S; Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium.
  • Ardui S; Department of Human Genetics, University of Leuven, Leuven 3000, Belgium.
  • Singh K; Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium.
  • Majumdar D; Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium.
  • Nair N; Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium.
  • Fu Y; Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA02129, USA.
  • Reyon D; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
  • Samara E; Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA02129, USA.
  • Gerli MFM; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
  • Klein AF; Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium.
  • De Schrijver W; Department of Cell and Developmental Biology, University College London, London WC1E6DE, UK.
  • Tipanee J; Sorbonne Universités, INSERM, Association Institute de Myologie, Center de Recherche en Myologie, F-75013 , France.
  • Seneca S; Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium.
  • Tulalamba W; Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium.
  • Wang H; Research Group Reproduction and Genetics (REGE), Center for Medical Genetics, UZ Brussels, Vrije Universiteit Brussel, Brussels 1090, Belgium.
  • Chai YC; Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium.
  • In't Veld P; Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium.
  • Furling D; Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium.
  • Tedesco FS; Department of Pathology, Vrije Universiteit Brussel, Brussels 1090, Belgium.
  • Vermeesch JR; Sorbonne Universités, INSERM, Association Institute de Myologie, Center de Recherche en Myologie, F-75013 , France.
  • Joung JK; Department of Cell and Developmental Biology, University College London, London WC1E6DE, UK.
  • Chuah MK; Department of Human Genetics, University of Leuven, Leuven 3000, Belgium.
  • VandenDriessche T; Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA02129, USA.
Nucleic Acids Res ; 46(16): 8275-8298, 2018 09 19.
Article em En | MEDLINE | ID: mdl-29947794
ABSTRACT
CRISPR/Cas9 is an attractive platform to potentially correct dominant genetic diseases by gene editing with unprecedented precision. In the current proof-of-principle study, we explored the use of CRISPR/Cas9 for gene-editing in myotonic dystrophy type-1 (DM1), an autosomal-dominant muscle disorder, by excising the CTG-repeat expansion in the 3'-untranslated-region (UTR) of the human myotonic dystrophy protein kinase (DMPK) gene in DM1 patient-specific induced pluripotent stem cells (DM1-iPSC), DM1-iPSC-derived myogenic cells and DM1 patient-specific myoblasts. To eliminate the pathogenic gain-of-function mutant DMPK transcript, we designed a dual guide RNA based strategy that excises the CTG-repeat expansion with high efficiency, as confirmed by Southern blot and single molecule real-time (SMRT) sequencing. Correction efficiencies up to 90% could be attained in DM1-iPSC as confirmed at the clonal level, following ribonucleoprotein (RNP) transfection of CRISPR/Cas9 components without the need for selective enrichment. Expanded CTG repeat excision resulted in the disappearance of ribonuclear foci, a quintessential cellular phenotype of DM1, in the corrected DM1-iPSC, DM1-iPSC-derived myogenic cells and DM1 myoblasts. Consequently, the normal intracellular localization of the muscleblind-like splicing regulator 1 (MBNL1) was restored, resulting in the normalization of splicing pattern of SERCA1. This study validates the use of CRISPR/Cas9 for gene editing of repeat expansions.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Expansão das Repetições de Trinucleotídeos / Mioblastos / Células-Tronco Pluripotentes Induzidas / Sistemas CRISPR-Cas / Edição de Genes / Distrofia Miotônica Limite: Child / Female / Humans / Middle aged Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Expansão das Repetições de Trinucleotídeos / Mioblastos / Células-Tronco Pluripotentes Induzidas / Sistemas CRISPR-Cas / Edição de Genes / Distrofia Miotônica Limite: Child / Female / Humans / Middle aged Idioma: En Ano de publicação: 2018 Tipo de documento: Article