Your browser doesn't support javascript.
loading
Fat storage-inducing transmembrane protein 2 (FIT2) is less abundant in type 2 diabetes, and regulates triglyceride accumulation and insulin sensitivity in adipocytes.
Agrawal, Madhur; Yeo, Chia Rou; Shabbir, Asim; Chhay, Vanna; Silver, David L; Magkos, Faidon; Vidal-Puig, Antonio; Toh, Sue-Anne.
Afiliação
  • Agrawal M; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA.
  • Yeo CR; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
  • Shabbir A; Department of Surgery, National University Hospital, Singapore.
  • Chhay V; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
  • Silver DL; Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore.
  • Magkos F; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
  • Vidal-Puig A; Singapore Institute of Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore.
  • Toh SA; Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.
FASEB J ; 33(1): 430-440, 2019 01.
Article em En | MEDLINE | ID: mdl-30020828
ABSTRACT
Fat storage-inducing transmembrane protein 2 (FIT2) aids in partitioning of cellular triacylglycerol into lipid droplets. A genome-wide association study reported FITM2-R3H domain containing like-HNF4A locus to be associated with type 2 diabetes (T2DM) in East Asian populations. Mice with adipose tissue (AT)-specific FIT2 knockout exhibited lipodystrophic features, with reduced AT mass, insulin resistance, and greater inflammation in AT when fed a high-fat diet. The role of FIT2 in regulating human adipocyte function is not known. Here, we found FIT2 protein abundance is lower in subcutaneous and omental AT obtained from patients with T2DM compared with nondiabetic control subjects. Partial loss of FIT2 protein in primary human adipocytes attenuated their lipid storage capacity and induced insulin resistance. After palmitate treatment, triacylglycerol accumulation, insulin-induced Akt (Ser-473) phosphorylation, and insulin-stimulated glucose uptake were significantly reduced in FIT2 knockdown adipocytes compared with control cells. Gene expression of proinflammatory cytokines IL-18 and IL-6 and phosphorylation of the endoplasmic reticulum stress marker inositol-requiring enzyme 1α were greater in FIT2 knockdown adipocytes than in control cells. Our results show for the first time that FIT2 is associated with T2DM in humans and plays an integral role in maintaining metabolically healthy AT function.-Agrawal, M., Yeo, C. R., Shabbir, A., Chhay, V., Silver, D. L., Magkos, F., Vidal-Puig, A., Toh, S.-A. Fat storage-inducing transmembrane protein 2 (FIT2) is less abundant in type 2 diabetes, and regulates triglyceride accumulation and insulin sensitivity in adipocytes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Triglicerídeos / Resistência à Insulina / Adipócitos / Diabetes Mellitus Tipo 2 / Proteínas de Membrana Tipo de estudo: Diagnostic_studies / Observational_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Triglicerídeos / Resistência à Insulina / Adipócitos / Diabetes Mellitus Tipo 2 / Proteínas de Membrana Tipo de estudo: Diagnostic_studies / Observational_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2019 Tipo de documento: Article