Your browser doesn't support javascript.
loading
Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains.
Liu, Yuling; Tie, Boqing; Li, Yuanxinglu; Lei, Ming; Wei, Xiangdong; Liu, Xiaoli; Du, Huihui.
Afiliação
  • Liu Y; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Eff
  • Tie B; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Eff
  • Li Y; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Eff
  • Lei M; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Eff
  • Wei X; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Eff
  • Liu X; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Eff
  • Du H; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Eff
Ecotoxicol Environ Saf ; 163: 223-229, 2018 Nov 15.
Article em En | MEDLINE | ID: mdl-30055387
ABSTRACT
Bioremediation of heavy metal polluted soil using metal-resistant bacteria has received increasing attentions. In the present study, we isolated a heavy metal-resistant bacterial strain from a Cd-contaminated soil, and conducted pot experiments to evaluate the effect of bacterial inoculation in soil on soil Cd speciation, rice grain biomass and Cd accumulation. We find that the isolated bacterial strain is a Gram-negative bacterium, and named as Delftia sp. B9 based on the 16S rDNA gene sequence analysis. TEM-EDS manifests that Cd can be bioaccumulated inside cell, resulting in intracellular dissolution. The Cd contents of rice grain in the two rice cultivars (early and late rice) are all below the standard limit for Food Safety of People's Republic of China (0.2 mg/kg) after the treatment of both living and non-living cells. Non-living cells are more applicable than the use of living cells for the short time bioremediation. The average content of soil exchangeable fraction of Cd decreases whereas the residual fraction increases with bacterial inoculation. All our results suggest Delftia sp. B9 is able to the stabilization of Cd in soil and reduce Cd accumulation in rice grain, therefore, this strain is potentially suitable for the bioremediation of Cd-contaminated paddy soils.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Solo / Poluentes do Solo / Cádmio / Grão Comestível / Delftia País/Região como assunto: Asia Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Solo / Poluentes do Solo / Cádmio / Grão Comestível / Delftia País/Região como assunto: Asia Idioma: En Ano de publicação: 2018 Tipo de documento: Article