Your browser doesn't support javascript.
loading
The Differential Time-Varying Effect Model (DTVEM): A tool for diagnosing and modeling time lags in intensive longitudinal data.
Jacobson, Nicholas C; Chow, Sy-Miin; Newman, Michelle G.
Afiliação
  • Jacobson NC; Pennsylvania State University, University Park, PA, USA. njacobson88@gmail.com.
  • Chow SM; Pennsylvania State University, University Park, PA, USA.
  • Newman MG; Pennsylvania State University, University Park, PA, USA.
Behav Res Methods ; 51(1): 295-315, 2019 02.
Article em En | MEDLINE | ID: mdl-30120682
With the recent growth in intensive longitudinal designs and the corresponding demand for methods to analyze such data, there has never been a more pressing need for user-friendly analytic tools that can identify and estimate optimal time lags in intensive longitudinal data. The available standard exploratory methods to identify optimal time lags within univariate and multivariate multiple-subject time series are greatly underpowered at the group (i.e., population) level. We describe a hybrid exploratory-confirmatory tool, referred to herein as the Differential Time-Varying Effect Model (DTVEM), which features a convenient user-accessible function to identify optimal time lags and estimate these lags within a state-space framework. Data from an empirical ecological momentary assessment study are then used to demonstrate the utility of the proposed tool in identifying the optimal time lag for studying the linkages between nervousness and heart rate in a group of undergraduate students. Using a simulation study, we illustrate the effectiveness of DTVEM in identifying optimal lag structures in multiple-subject time-series data with missingness, as well as its strengths and limitations as a hybrid exploratory-confirmatory approach, relative to other existing approaches.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interpretação Estatística de Dados / Estudos Longitudinais / Modelos Estatísticos Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interpretação Estatística de Dados / Estudos Longitudinais / Modelos Estatísticos Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article