Your browser doesn't support javascript.
loading
Detection of hydrogen peroxide production in the isolated rat lung using Amplex red.
Audi, Said H; Friedly, Nina; Dash, Ranjan K; Beyer, Andreas M; Clough, Anne V; Jacobs, Elizabeth R.
Afiliação
  • Audi SH; a Medical College of Wisconsin Department of Biomedical Engineering , Marquette University , Milwaukee , WI , USA.
  • Friedly N; c Division of Pulmonary and Critical Care Medicine , Medical College of Wisconsin , Milwaukee, WI , USA.
  • Dash RK; a Medical College of Wisconsin Department of Biomedical Engineering , Marquette University , Milwaukee , WI , USA.
  • Beyer AM; a Medical College of Wisconsin Department of Biomedical Engineering , Marquette University , Milwaukee , WI , USA.
  • Clough AV; d Department of Medicine , Medical College of Wisconsin , Milwaukee, WI , USA.
  • Jacobs ER; e Department of Mathematics, Statistics, and Computer Science , Marquette University , Milwaukee , WI , USA.
Free Radic Res ; 52(9): 1052-1062, 2018 Sep.
Article em En | MEDLINE | ID: mdl-30175632
ABSTRACT
The objectives of this study were to develop a robust protocol to measure the rate of hydrogen peroxide (H2O2) production in isolated perfused rat lungs, as an index of oxidative stress, and to determine the cellular sources of the measured H2O2 using the extracellular probe Amplex red (AR). AR was added to the recirculating perfusate in an isolated perfused rat lung. AR's highly fluorescent oxidation product resorufin was measured in the perfusate. Experiments were carried out without and with rotenone (complex I inhibitor), thenoyltrifluoroacetone (complex II inhibitor), antimycin A (complex III inhibitor), potassium cyanide (complex IV inhibitor), or diohenylene iodonium (inhibitor of flavin-containing enzymes, e.g. NAD(P)H oxidase or NOX) added to the perfusate. We also evaluated the effect of acute changes in oxygen (O2) concentration of ventilation gas on lung rate of H2O2 release into the perfusate. Baseline lung rate of H2O2 release was 8.45 ± 0.31 (SEM) nmol/min/g dry wt. Inhibiting mitochondrial complex II reduced this rate by 76%, and inhibiting flavin-containing enzymes reduced it by another 23%. Inhibiting complex I had a small (13%) effect on the rate, whereas inhibiting complex III had no effect. Inhibiting complex IV increased this rate by 310%. Increasing %O2 in the ventilation gas mixture from 15 to 95% had a small (27%) effect on this rate, and this O2-dependent increase was mostly nonmitochondrial. Results suggest complex II as a potentially important source and/or regulator of mitochondrial H2O2, and that most of acute hyperoxia-enhanced lung rate of H2O2 release is from nonmitochondrial rather than mitochondrial sources.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Oxidativo / Complexo de Proteínas da Cadeia de Transporte de Elétrons / Peróxido de Hidrogênio / Pulmão Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Oxidativo / Complexo de Proteínas da Cadeia de Transporte de Elétrons / Peróxido de Hidrogênio / Pulmão Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article