Your browser doesn't support javascript.
loading
The effects of AICAR and rapamycin on mitochondrial function in immortalized mitochondrial DNA mutator murine embryonic fibroblasts.
Delic, Vedad; Noble, Kenyaria; Zivkovic, Sandra; Phan, Tam-Anh; Reynes, Christian; Zhang, Yumeng; Phillips, Oluwakemi; Claybaker, Charles; Ta, Yen; Dinh, Vinh B; Cruz, Josean; Prolla, Tomas A; Bradshaw, Patrick C.
Afiliação
  • Delic V; Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama Birmingham School of Medicine, Birmingham, AL 35233, USA.
  • Noble K; Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
  • Zivkovic S; Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
  • Phan TA; Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
  • Reynes C; Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
  • Zhang Y; Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
  • Phillips O; Department of Internal Medicine, University of South Florida, Tampa, FL 33606, USA.
  • Claybaker C; University of South Florida College of Medicine, Department of Molecular Pharmacology and Physiology, Tampa, FL 33612, USA.
  • Ta Y; Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
  • Dinh VB; Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
  • Cruz J; Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
  • Prolla TA; Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
  • Bradshaw PC; Department of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
Biol Open ; 7(11)2018 Nov 16.
Article em En | MEDLINE | ID: mdl-30177551
ABSTRACT
Mitochondrial DNA mutations accumulate with age and may play a role in stem cell aging as suggested by the premature aging phenotype of mitochondrial DNA polymerase gamma (POLG) exonuclease-deficient mice. Therefore, E1A immortalized murine embryonic fibroblasts (MEFs) from POLG exonuclease-deficient and wild-type (WT) mice were constructed. Surprisingly, when some E1A immortalized MEF lines were cultured in pyruvate-containing media they slowly became addicted to the pyruvate. The POLG exonuclease-deficient MEFs were more sensitive to several mitochondrial inhibitors and showed increased reactive oxygen species (ROS) production under standard conditions. When cultured in pyruvate-containing media, POLG exonuclease-deficient MEFs showed decreased oxygen consumption compared to controls. Increased AMP-activated protein kinase (AMPK) signaling and decreased mammalian target of rapamycin (mTOR) signaling delayed aging and influenced mitochondrial function. Therefore, the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, or rapamycin, an mTOR inhibitor, on measures of mitochondrial function were determined. Rapamycin treatment transiently increased respiration only in WT MEFs and, under most conditions, increased ATP levels. Short term AICAR treatment transiently increased ROS production and, under most conditions, decreased ATP levels. Chronic AICAR treatment decreased respiration and ROS production in WT MEFs. These results demonstrate the context-dependent effects of AICAR and rapamycin on mitochondrial function.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article