Your browser doesn't support javascript.
loading
Fabrication and Characterization of Gliclazide Nanocrystals.
Ravouru, Nagaraju; Venna, Rajeswari Surya Anusha; Penjuri, Subhash Chandra Bose; Damineni, Saritha; Kotakadi, Venkata Subbaiah; Poreddy, Srikanth Reddy.
Afiliação
  • Ravouru N; Institute of Pharmaceutical Technology, Sri Padmavathi Mahila University, Tirupati, Andhra Pradesh, India.
  • Venna RSA; Institute of Pharmaceutical Technology, Sri Padmavathi Mahila University, Tirupati, Andhra Pradesh, India.
  • Penjuri SCB; Department of Pharmaceutics, MNR College of Pharmacy, Sangareddy, Telangana, India.
  • Damineni S; Department of Pharmaceutics, Sultan-ul-Uloom College of Pharmacy, Hyderabad, Telangana, India.
  • Kotakadi VS; Research Scientist, DST Purse Centre, S.V. University, Tirupati, Andhra Pradesh, India.
  • Poreddy SR; Department of Pharmaceutics, MNR College of Pharmacy, Sangareddy, Telangana, India.
Adv Pharm Bull ; 8(3): 419-427, 2018 Aug.
Article em En | MEDLINE | ID: mdl-30276138
ABSTRACT

Purpose:

The main aim of the present investigation was to enhance the solubility of poorly soluble Gliclazide by nanocrystallization.

Methods:

In present investigation gliclazide nanocrystals were prepared by sonoprecipitation using Pluronic F68, Poly Vinyl Alcohol (PVA), Poly ethylene Glycol 6000 (PEG), Poly Vinyl Pyrrolidine (PVP K30) and Sodium Lauryl Sulphate (SLS) as stabilizers. Fourier Transform Infrared Spectroscopic study (FTIR), Differential Scanning Calorimetry (DSC) and X ray diffraction (XRD) studies were conducted to study the drug interactions. Size and zeta potential of the nanocrystals were evaluated. In vitro and in vivo studies of nanocrystals were conducted in comparison to pure gliclazide.

Results:

The Gliclazide nanocrystals (GN) showed mean particle size of 131±7.7 nm with a zeta potential of -26.6 mV. Stable nanocrystals were formed with 0.5% of PEG 6000. FTIR, DSC and XRD studies of nanocrystals showed absence of interactions and polymorphism. SEM photographs showed a change in morphology of crystals from rod to irregular shape. There is an increase in the saturation solubility and the percentage drug release from formulation GN5 (Optimized Gliclazide Nanocrystals) was found to be 98.5 in 15 min. In the in vivo study, GN5 nanocrystals have reduced the blood glucose level to 296.4±4.26 mg/dl in 12 hr. The nanocrystals showed lower tmax and higher Cmax values as compared to pure gliclazide.

Conclusion:

The prepared nanocrystals of gliclazide were stable without any drug polymer interactions. Increase in the dissolution of nanocrystals compared to pure gliclazide and significant reduction in blood glucose level in vivo indicated better bioavailability of the nanocrystals. Therefore, it is concluded that nanocrystal technology can be a promising tool to improve solubility and hence dissolution of a hydrophobic drug.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article