Your browser doesn't support javascript.
loading
Homeostatic Plasticity Scales Dendritic Spine Volumes and Changes the Threshold and Specificity of Hebbian Plasticity.
Hobbiss, Anna Felicity; Ramiro-Cortés, Yazmin; Israely, Inbal.
Afiliação
  • Hobbiss AF; Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal.
  • Ramiro-Cortés Y; Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito exterior s/n, Ciudad de México 04510, México.
  • Israely I; Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal; Department of Pathology and Cell Biology in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neuroscience, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA. Electronic address: ii2176@columbia.edu.
iScience ; 8: 161-174, 2018 Oct 26.
Article em En | MEDLINE | ID: mdl-30317078
ABSTRACT
Information is encoded in neural networks through changes in synaptic weights. Synaptic learning rules involve a combination of rapid Hebbian plasticity and slower homeostatic synaptic plasticity that regulates neuronal activity through global synaptic scaling. Hebbian and homeostatic plasticity have been extensively investigated, whereas much less is known about their interaction. Here we investigated structural and functional consequences of homeostatic plasticity at dendritic spines of mouse hippocampal neurons. We found that prolonged activity blockade induced spine growth, paralleling synaptic strength increases. Following activity blockade, glutamate uncaging-mediated stimulation at single spines led to size-dependent structural potentiation smaller spines underwent robust growth, whereas larger spines remained unchanged. Moreover, spines near the stimulated spine exhibited volume changes following homeostatic plasticity, indicating that there was a breakdown of input specificity following homeostatic plasticity. Overall, these findings demonstrate that Hebbian and homeostatic plasticity interact to shape neural connectivity through non-uniform structural plasticity at inputs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article