Your browser doesn't support javascript.
loading
In vivo RNA structural probing of uracil and guanine base-pairing by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC).
Mitchell, David; Renda, Andrew J; Douds, Catherine A; Babitzke, Paul; Assmann, Sarah M; Bevilacqua, Philip C.
Afiliação
  • Mitchell D; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
  • Renda AJ; Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
  • Douds CA; Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
  • Babitzke P; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
  • Assmann SM; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
  • Bevilacqua PC; Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
RNA ; 25(1): 147-157, 2019 01.
Article em En | MEDLINE | ID: mdl-30341176
Many biological functions performed by RNAs arise from their in vivo structures. The structure of the same RNA can differ in vitro and in vivo owing in part to the influence of molecules ranging from protons to secondary metabolites to proteins. Chemical reagents that modify the Watson-Crick (WC) face of unprotected RNA bases report on the absence of base-pairing and so are of value to determining structures adopted by RNAs. Reagents have thus been sought that can report on the native RNA structures that prevail in living cells. Dimethyl sulfate (DMS) and glyoxal penetrate cell membranes and inform on RNA secondary structure in vivo through modification of adenine (A), cytosine (C), and guanine (G) bases. Uracil (U) bases, however, have thus far eluded characterization in vivo. Herein, we show that the water-soluble carbodiimide 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) is capable of modifying the WC face of U and G in vivo, favoring the former nucleobase by a factor of ∼1.5, and doing so in the eukaryote rice, as well as in the Gram-negative bacterium Escherichia coli While both EDC and glyoxal target Gs, EDC reacts with Gs in their typical neutral state, while glyoxal requires Gs to populate the rare anionic state. EDC may thus be more generally useful; however, comparison of the reactivity of EDC and glyoxal may allow the identification of Gs with perturbed pKas in vivo and genome-wide. Overall, use of EDC with DMS allows in vivo probing of the base-pairing status of all four RNA bases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: RNA / Etildimetilaminopropil Carbodi-Imida Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: RNA / Etildimetilaminopropil Carbodi-Imida Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article