Your browser doesn't support javascript.
loading
Selective activation and proliferation of a quiescent stem cell population in the neuroepithelial body microenvironment.
Verckist, Line; Pintelon, Isabel; Timmermans, Jean-Pierre; Brouns, Inge; Adriaensen, Dirk.
Afiliação
  • Verckist L; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium.
  • Pintelon I; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium.
  • Timmermans JP; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium.
  • Brouns I; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium.
  • Adriaensen D; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium. dirk.adriaensen@uantwerpen.be.
Respir Res ; 19(1): 207, 2018 Oct 26.
Article em En | MEDLINE | ID: mdl-30367659
ABSTRACT

BACKGROUND:

The microenvironment (ME) of neuroepithelial bodies (NEBs) harbors densely innervated groups of pulmonary neuroendocrine cells that are covered by Clara-like cells (CLCs) and is believed to be important during development and for adult airway epithelial repair after severe injury. Yet, little is known about its potential stem cell characteristics in healthy postnatal lungs.

METHODS:

Transient mild lung inflammation was induced in mice via a single low-dose intratracheal instillation of lipopolysaccharide (LPS). Bronchoalveolar lavage fluid (BALF), collected 16 h after LPS instillation, was used to challenge the NEB ME in ex vivo lung slices of control mice. Proliferating cells in the NEB ME were identified and quantified following simultaneous LPS instillation and BrdU injection.

RESULTS:

The applied LPS protocol induced very mild and transient lung injury. Challenge of lung slices with BALF of LPS-treated mice resulted in selective Ca2+-mediated activation of CLCs in the NEB ME of control mice. Forty-eight hours after LPS challenge, a remarkably selective and significant increase in the number of divided (BrdU-labeled) cells surrounding NEBs was observed in lung sections of LPS-challenged mice. Proliferating cells were identified as CLCs.

CONCLUSIONS:

A highly reproducible and minimally invasive lung inflammation model was validated for inducing selective activation of a quiescent stem cell population in the NEB ME. The model creates new opportunities for unraveling the cellular mechanisms/pathways regulating silencing, activation, proliferation and differentiation of this unique postnatal airway epithelial stem cell population.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco / Mucosa Respiratória / Células Neuroepiteliais / Proliferação de Células / Nicho de Células-Tronco Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco / Mucosa Respiratória / Células Neuroepiteliais / Proliferação de Células / Nicho de Células-Tronco Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article