Your browser doesn't support javascript.
loading
Microbial Interkingdom Interactions in Roots Promote Arabidopsis Survival.
Durán, Paloma; Thiergart, Thorsten; Garrido-Oter, Ruben; Agler, Matthew; Kemen, Eric; Schulze-Lefert, Paul; Hacquard, Stéphane.
Afiliação
  • Durán P; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
  • Thiergart T; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
  • Garrido-Oter R; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
  • Agler M; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
  • Kemen E; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
  • Schulze-Lefert P; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany. Electronic address: schlef@mpipz.mpg.de.
  • Hacquard S; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany. Electronic address: hacquard@mpipz.mpg.de.
Cell ; 175(4): 973-983.e14, 2018 11 01.
Article em En | MEDLINE | ID: mdl-30388454
ABSTRACT
Roots of healthy plants are inhabited by soil-derived bacteria, fungi, and oomycetes that have evolved independently in distinct kingdoms of life. How these microorganisms interact and to what extent those interactions affect plant health are poorly understood. We examined root-associated microbial communities from three Arabidopsis thaliana populations and detected mostly negative correlations between bacteria and filamentous microbial eukaryotes. We established microbial culture collections for reconstitution experiments using germ-free A. thaliana. In plants inoculated with mono- or multi-kingdom synthetic microbial consortia, we observed a profound impact of the bacterial root microbiota on fungal and oomycetal community structure and diversity. We demonstrate that the bacterial microbiota is essential for plant survival and protection against root-derived filamentous eukaryotes. Deconvolution of 2,862 binary bacterial-fungal interactions ex situ, combined with community perturbation experiments in planta, indicate that biocontrol activity of bacterial root commensals is a redundant trait that maintains microbial interkingdom balance for plant health.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis / Raízes de Plantas / Consórcios Microbianos Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis / Raízes de Plantas / Consórcios Microbianos Idioma: En Ano de publicação: 2018 Tipo de documento: Article