Your browser doesn't support javascript.
loading
Discovery of a non-toxic [1,2,4]triazolo[1,5-a]pyrimidin-7-one (WS-10) that modulates ABCB1-mediated multidrug resistance (MDR).
Chang, Liming; Xiao, Mengwu; Yang, Linlin; Wang, Shuai; Wang, Sai-Qi; Bender, Andreas; Hu, Aixi; Chen, Zhe-Sheng; Yu, Bin; Liu, Hong-Min.
Afiliação
  • Chang L; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zh
  • Xiao M; Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
  • Yang L; Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
  • Wang S; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zh
  • Wang SQ; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zh
  • Bender A; Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
  • Hu A; College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
  • Chen ZS; College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
  • Yu B; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zh
  • Liu HM; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou 450001, China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zh
Bioorg Med Chem ; 26(22): 5974-5985, 2018 12 01.
Article em En | MEDLINE | ID: mdl-30401501
ABSTRACT
Multidrug resistance (MDR) has been shown to reduce the effectiveness of chemotherapy. Strategies to overcoming MDR have been widely explored in the last decades, leading to a generation of numerous small molecules targeting ABC and MRP transporters. Among the ABC family, ABCB1 plays key roles in the development of drug resistance and is the most well studied. In this work, we report the discovery of non-toxic [1,2,4]triazolo[1,5-a]pyrimidin-7-one (WS-10) from our structurally diverse in-house compound collection that selectively modulates ABCB1-mediated multidrug resistance. WS-10 enhanced the intracellular accumulation of paclitaxel in SW620/Ad300 cells, but did not affect the expression of ABCB1 Protein and ABCB1 localization. The cellular thermal shift assay (CETSA) showed that WS-10 was able to bind to ABCB1, which could be responsible for the reversal effect of WS-10 toward paclitaxel and doxorubicin in SW620/Ad300 cells. Docking simulations were performed to show the possible binding modes of WS-10 within ABCB1 transporter. To conclude, WS-10 could be used as a template for designing new ABCB1 modulators to overcome ABCB1-mediated multidrug resistance.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article