Your browser doesn't support javascript.
loading
Active superelasticity in three-dimensional epithelia of controlled shape.
Latorre, Ernest; Kale, Sohan; Casares, Laura; Gómez-González, Manuel; Uroz, Marina; Valon, Léo; Nair, Roshna V; Garreta, Elena; Montserrat, Nuria; Del Campo, Aránzazu; Ladoux, Benoit; Arroyo, Marino; Trepat, Xavier.
Afiliação
  • Latorre E; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
  • Kale S; LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain.
  • Casares L; LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain.
  • Gómez-González M; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
  • Uroz M; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
  • Valon L; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
  • Nair RV; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
  • Garreta E; INM-Leibniz Institut für Neue Materialien, Saarbrücken, Germany.
  • Montserrat N; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
  • Del Campo A; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
  • Ladoux B; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain.
  • Arroyo M; INM-Leibniz Institut für Neue Materialien, Saarbrücken, Germany.
  • Trepat X; Chemistry Department, Saarland University, Saarbrücken, Germany.
Nature ; 563(7730): 203-208, 2018 11.
Article em En | MEDLINE | ID: mdl-30401836
ABSTRACT
Fundamental biological processes are carried out by curved epithelial sheets that enclose a pressurized lumen. How these sheets develop and withstand three-dimensional deformations has remained unclear. Here we combine measurements of epithelial tension and shape with theoretical modelling to show that epithelial sheets are active superelastic materials. We produce arrays of epithelial domes with controlled geometry. Quantification of luminal pressure and epithelial tension reveals a tensional plateau over several-fold areal strains. These extreme strains in the tissue are accommodated by highly heterogeneous strains at a cellular level, in seeming contradiction to the measured tensional uniformity. This phenomenon is reminiscent of superelasticity, a behaviour that is generally attributed to microscopic material instabilities in metal alloys. We show that in epithelial cells this instability is triggered by a stretch-induced dilution of the actin cortex, and is rescued by the intermediate filament network. Our study reveals a type of mechanical behaviour-which we term active superelasticity-that enables epithelial sheets to sustain extreme stretching under constant tension.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Elasticidade / Células Epiteliais Limite: Animals / Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Elasticidade / Células Epiteliais Limite: Animals / Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article