Your browser doesn't support javascript.
loading
Neuroprotective action of diazepam at very low and moderate doses in Alzheimer's disease model rats.
Pilipenko, Vladimirs; Narbute, Karina; Pupure, Jolanta; Rumaks, Juris; Jansone, Baiba; Klusa, Vija.
Afiliação
  • Pilipenko V; Department of Pharmacology, Faculty of Medicine, University of Latvia, 1 Jelgavas St., LV 1004, Riga, Latvia. Electronic address: vladimirs.pilipenko@lu.lv.
  • Narbute K; Department of Pharmacology, Faculty of Medicine, University of Latvia, 1 Jelgavas St., LV 1004, Riga, Latvia.
  • Pupure J; Department of Pharmacology, Faculty of Medicine, University of Latvia, 1 Jelgavas St., LV 1004, Riga, Latvia.
  • Rumaks J; Department of Pharmacology, Faculty of Medicine, University of Latvia, 1 Jelgavas St., LV 1004, Riga, Latvia.
  • Jansone B; Department of Pharmacology, Faculty of Medicine, University of Latvia, 1 Jelgavas St., LV 1004, Riga, Latvia.
  • Klusa V; Department of Pharmacology, Faculty of Medicine, University of Latvia, 1 Jelgavas St., LV 1004, Riga, Latvia.
Neuropharmacology ; 144: 319-326, 2019 01.
Article em En | MEDLINE | ID: mdl-30408486
Early manifestations of Alzheimer's disease (AD) include neuroinflammation, disrupted neurotransmission and cognitive deficits. Impairment of the GABAergic system is essentially involved in the pathogenesis of AD. Traditionally, agonists of GABAA receptors at doses above 1 mg/kg are known to possess memory impairing effects. However, we have previously found that GABAA receptor GABA site ligand muscimol at very low doses acted contrary - enhanced spatial learning/memory, as well as prevented neuroinflammation and augmented neurotransmission in AD model rats. Therefore, in the present study we focused on the assessment of the effects of non-sedative - very low (0.05 mg/kg) and moderate (1 mg/kg) - doses of diazepam, a positive allosteric modulator of benzodiazepine site of GABAA receptors. Its effects on spatial learning/memory and brain proteins related to neuroinflammation (GFAP and Iba-1), synaptic plasticity (SYP1), as well as acetylcholine breakdown and GABA biosynthesis were studied. Non-transgenic AD model rats (intracerebroventricular streptozocin injection) were used with the aim to mimic the pre-dementia stage of AD in humans. The obtained data showed that diazepam at both doses protected against streptozocin induced detrimental effects by enhancing spatial learning/memory, preventing neuroinflammation, preserving synaptic plasticity, as well as normalizing the hippocampal and cortical protein expression related to acetylcholine breakdown and GABA biosynthesis. One may suggest that at low and moderate doses diazepam is targeting non-specific, probably allosteric GABAA receptor sites, thus leading to stimulatory effects that can be beneficial for diazepam use in early pre-dementia stages of AD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fármacos Neuroprotetores / Diazepam / Doença de Alzheimer Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fármacos Neuroprotetores / Diazepam / Doença de Alzheimer Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article