Your browser doesn't support javascript.
loading
Regional and network properties of white matter function in Parkinson's disease.
Ji, Gong-Jun; Ren, Cuiping; Li, Ying; Sun, Jinmei; Liu, Tingting; Gao, Yaxiang; Xue, Dongzhang; Shen, Longshan; Cheng, Wen; Zhu, Chunyan; Tian, Yanghua; Hu, Panpan; Chen, Xianwen; Wang, Kai.
Afiliação
  • Ji GJ; Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China.
  • Ren C; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China.
  • Li Y; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
  • Sun J; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China.
  • Liu T; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
  • Gao Y; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
  • Xue D; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China.
  • Shen L; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
  • Cheng W; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
  • Zhu C; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China.
  • Tian Y; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
  • Hu P; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
  • Chen X; Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China.
  • Wang K; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
Hum Brain Mapp ; 40(4): 1253-1263, 2019 03.
Article em En | MEDLINE | ID: mdl-30414340
Parkinson's disease (PD) is a neurodegenerative disorder with dysfunction in cortices as well as white matter (WM) tracts. While the changes to WM structure have been extensively investigated in PD, the nature of the functional changes to WM remains unknown. In this study, the regional activity and functional connectivity of WM were compared between PD patients (n = 57) and matched healthy controls (n = 52), based on multimodel magnetic resonance imaging data sets. By tract-based spatial statistical analyses of regional activity, patients showed decreased structural-functional coupling in the left corticospinal tract compared to controls. This tract also displayed abnormally increased functional connectivity within the left post-central gyrus and left putamen in PD patients. At the network level, the WM functional network showed small-worldness in both controls and PD patients, yet it was abnormally increased in the latter group. Based on the features of the WM functional connectome, previously un-evaluated individuals could be classified with fair accuracy (73%) and area under the curve of the receiver operating characteristics (75%). These neuroimaging findings provide direct evidence for WM functional changes in PD, which is crucial to understand the functional role of fiber tracts in the pathology of neural circuits.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Encéfalo / Substância Branca / Vias Neurais Tipo de estudo: Prognostic_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Encéfalo / Substância Branca / Vias Neurais Tipo de estudo: Prognostic_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2019 Tipo de documento: Article